Skip to main content

Advertisement

Log in

Thorium-228 as emitting source for InGaP/GaAs-based heterojunction alphavoltaic cells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Alphavoltaic nuclear batteries are promising long-life power sources. Their effective performance is strongly dependent on the design of the device structure and the used semiconductors as well as on the appropriate radiation source involved in the power conversion process. Currently, semiconductor heterojunction structures are promising in improving the efficiency of nuclear micro-batteries. In this study, we designed and evaluated a micro-power alphavoltaic nuclear battery consisting of an In0.49Ga0.51P/GaAs alphavoltaic heterostructure using a lab-made software. The device active area is 1 cm2 and the assumed energy source is Thorium-228 (Th228) which emits alpha particles with an average kinetic energy of 5.423 MeV. We used a comprehensive analytical model to extract the energy conversion efficiency of the cell by simulating its current density–voltage J(V) and output electric power P(V) curves. Our analysis took into account the reflection of the incident alpha particles from the front surface, the ohmic losses, the limits of the space charge region, and the metallurgical border effects. To optimize the device performance, we investigated a wide range of doping concentrations and surface recombination velocities in both the back and front regions while also assuming different values of the radioisotope apparent activity density. Under irradiation by a 3.2 mCi/cm2 Th228 source, the energy conversion efficiency of the cell is 8.83%, while the maximum output power density is 18.15 µW/cm2. The obtained results are very encouraging showing that the use of Th228 coupled with an appropriate In0.49Ga0.51P/GaAs heterojunction could be a suitable solution for designing alphavoltaic batteries with a useful output power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, [F Bouzid], upon reasonable request.

References

  1. M. Prelas, M. Boraas, F. Aguilar, J.D. Seelig, M.T. Tchouaso, D. Wisniewski, Lecture Notes in Energy. Nuclear Batteries and Radioisotopes, 56th edn. (Springer, 2016)

    Book  Google Scholar 

  2. P. Rappaport, The electron-voltaic effect in p–n junctions induced by beta particle bombardment. Phys. Rev. 93, 246 (1953)

    Article  ADS  Google Scholar 

  3. A. Krasnov, S. Legotin, K. Kuzmina, N. Ershova, B. Rogozev, A nuclear battery based on silicon p-i-n structures with electroplating 63Ni layer. Nucl. Eng. Technol. 51, 1978–1982 (2019)

    Article  Google Scholar 

  4. J. Dixon, A. Rajan, S. Bohlemann, D. Coso, A.D. Upadhyaya, A. Rohatgi, S. Chu, A. Majumdar, S. Yee, Evaluation of a silicon 90Sr betavoltaic power source. Sci. Rep. 6, 38182 (2016). https://doi.org/10.1038/srep38182

    Article  ADS  Google Scholar 

  5. F. Bouzid, F. Pezzimenti, L. Dehimi, Modelling and performance analysis of a GaN-based n/p junction betavoltaic cell. Nuclear Inst. Methods Phys. Res. 969, 164103 (2020)

    Article  Google Scholar 

  6. R.K. Yürük, H. Tütüncüler, Theoretical investigation of high-efficiency GaN–Si heterojunction betavoltaic battery. Can. J. Phys. 97(9), 1031–1038 (2019). https://doi.org/10.1139/cjp-2018-0579

    Article  ADS  Google Scholar 

  7. C.E. Munson, Q. Gaimard, K. Merghem, S. Sundaram, D.J. Rogers, J. de Sanoit, P.L. Voss, A. Ramdane, J.P. Salvestrini, A. Ougazzaden, Modeling, design, fabrication and experimentation of a GaN-based 63Ni betavoltaic battery. J. Phys. D 51, 035101 (2018). https://doi.org/10.1088/1361-6463/aa9e41

    Article  ADS  Google Scholar 

  8. F. Bouzid, M.A. Saeed, R. Carotenuto, F. Pezzimenti, Design considerations on 4H-SiC-based p–n junction betavoltaic cells. Appl. Phys. A 128, 234 (2022). https://doi.org/10.1007/s00339-022-05374-7

    Article  ADS  Google Scholar 

  9. Y.M. Liu, J.B. Lu, X. Xu et al., A 4H-SiC betavoltaic battery based on a 63Ni source. Nucl. Sci. Tech. 29, 168 (2018)

    Article  ADS  Google Scholar 

  10. A.A. Svintsov, A.A. Krasnov, M.A. Polikarpov, A.Y. Polyakov, E.B. Yakimov, Betavoltaic battery performance: comparison of modeling and experiment. Appl. Radiat. Isot. 137, 184–189 (2018)

    Article  Google Scholar 

  11. S. Theirrattanakul, M. Prelas, A methodology for efficiency optimization of betavoltaic cell design using anisotropic planar source having an energy dependent beta particle distribution. Appl. Radiat. Isot. 127, 41–46 (2017)

    Article  Google Scholar 

  12. T.R. Alam, M.G. Spencer, M.A. Prelas, M.A. Pierson, Design and optimization of radioisotope sources for betavoltaic batteries. Int. J. Energy Res. 42, 2564–2573 (2018). https://doi.org/10.1002/er.4053

    Article  Google Scholar 

  13. L. Zhang, H.L. Cheng, X.C. Hu, X.B. Xu, Model and optimal design of 147Pm SiC-based betavoltaic cell. Superlattices Microstruct. (2018). https://doi.org/10.1016/j.spmi.2018.01.007

    Article  Google Scholar 

  14. V. Bormashov, S. Troschiev, A. Volkov, S. Tarelkin, E. Korostylev, A. Golovanov, M. Kuznetsov, D. Teteruk, N. Kornilov, S. Terentiev, S. Buga, V. Blank, Development of nuclear microbattery prototype based on Schottky barrier diamond diodes. Phys. Status Solidi A 212(11), 2539–2547 (2015). https://doi.org/10.1002/pssa.201532214

    Article  ADS  Google Scholar 

  15. Y.-M. Liu, L. Jing-Bin, X.X. Xiao-Yi Li, R. He, R.-Z. Zheng, G.-D. Wei, Theoretical prediction of diamond betavoltaic batteries performance using 63Ni. Chin. Phys. Lett. 35(7), 072301 (2018). https://doi.org/10.1088/0256-307X/35/7/072301

    Article  ADS  Google Scholar 

  16. M.G. Spencer, T. Alam, High power direct energy conversion by nuclear batteries. Appl. Phys. Rev. 6, 031305 (2019). https://doi.org/10.1063/1.5123163

    Article  ADS  Google Scholar 

  17. V.P. Khvostikov, V.S. Kalinovskiy, S.V. Sorokina, O.A. Khvostikova, V.M. Andreev, Tritium power supply sources based on AlGaAs/GaAs heterostructures. Tech. Phys. Lett. 45(12), 1197–1199 (2019)

    Article  ADS  Google Scholar 

  18. V.P. Khvostikov, V.S. Kalinovskiy, S.V. Sorokina, M.Z. Shvarts, N.S. Potapovich, O.A. Khvostikova, A.S. Vlasov, V.M. Andreev, AlGaAs/GaAs photovoltaic converters of tritium radioluminescent-lamp radiation. Semiconductors 52(13), 1754–1757 (2018)

    Article  ADS  Google Scholar 

  19. V.M. Andreev, A.G. Kavetskf, V.S. Kalinovsky, V.P. Khvostikov, V.R. Larionov, V.D. Rumyantsev, M.Z. Shvarts, E.V. Yakimova, V.A. Ustinov, Tritium-powered betacells based on AlxGa1-xAs. IEEE Photovolt. Specialists Conf. (2000). https://doi.org/10.1109/PVSC.2000.916117

    Article  Google Scholar 

  20. F. Bouzid, S. Dehimi, M. Hadjab, M.A. Saeed, F. Pezzimenti, Performance prediction of AlGaAs/GaAs betavoltaic cells irradiated by nickel-63 radioisotope. Physica B: Phys. of Conden. Matter. 607, 412850 (2021)

    Article  Google Scholar 

  21. S. Butera, G. Lioliou, A.M. Barnett, Temperature effects on gallium arsenide 63Ni betavoltaic cell. Appl. Radiat. Isot. 125, 42–47 (2017)

    Article  Google Scholar 

  22. A. Waris, Y. Kusumawati, A.S. Alfarobi, I.K. Aji, K. Basar, Preliminary design of betavoltaic battery using Co-60 and Pm-147 with GaAs substrate. AIP Conf. Proc. 1719, 030053 (2016). https://doi.org/10.1063/1.4943748

    Article  Google Scholar 

  23. S. Butera, M.D.C. Whitaker, A.B. Krysa, A.M. Barnett, Investigation of a temperature tolerant InGaP (GaInP) converter layer for a 63Ni betavoltaic cell. J. Phys. D 50, 345101 (2017)

    Article  ADS  Google Scholar 

  24. C.D. Cress, B.J. Landi, R.P. Raffaelle, InGaP alpha voltaic batteries: synthesis, modeling, and radiation tolerance. J. Appl. Phys. 100(11), 114519 (2006)

    Article  ADS  Google Scholar 

  25. C.D. Cress, B.J. Landi, R.P. Raffaelle, Modeling laterally-contacted nipi-diode radioisotope batteries. IEEE Trans. Nucl. Sci. 55(3), 1736 (2008)

    Article  ADS  Google Scholar 

  26. D.Y. Qiao, X.J. Chen, Y. Ren, W.Z. Yuan, A micro nuclear battery based on SiC Schottky barrier diode. J. Microelectromech. Syst. 20, 685–690 (2011)

    Article  Google Scholar 

  27. F. Bouzid, F. Pezzimenti, L. Dehimi, F.G. Della Corte, M. Hadjab, A.H. Larbi, Analytical modeling of dual-junction tandem solar cells based on an InGaP/GaAs heterojunction stacked on a Ge substrate. J. Electron. Mater. 48, 4107 (2019)

    Article  ADS  Google Scholar 

  28. W. Duan, A. Lambertz, K. Bittkau, D. Qiu, K. Qiu, U. Rau, K. Ding, A route towards high-efficiency silicon heterojunction solar cells. Prog. Photovolt. Res. Appl. 30, 384–392 (2022)

    Article  Google Scholar 

  29. Y. Liu, Y. Li, Y. Wu, G. Yang, L. Mazzarella, P. Procel-Moya, A.C. Tamboli, K. Weber, M. Boccard, O. Isabella, X. Yang, B. Sun, High-efficiency silicon heterojunction solar cells: materials, devices and applications. Mater. Sci. Eng. R. Rep. 142, 100579 (2020)

    Article  Google Scholar 

  30. C.F. Kamdem, A.T. Ngoupo, F.X.A. Abega, A.M.N. Abena, J.-M.B. Ndjaka, Design and performance enhancement of a GaAs-based homojunction solar cell using Ga0.5In0.5P as a back surface field (BSF): a simulation approach. Int. J. Photoenergy 2023, 6204891 (2023). https://doi.org/10.1155/2023/6204891

    Article  Google Scholar 

  31. J. Xu, M. Guo, M. Lu, H. He, G. Yang, J. Xu, Effect of alpha-particle irradiation on InGaP/GaAs/Ge triple-junction solar cells. Materials 11, 944 (2018). https://doi.org/10.3390/ma11060944

    Article  ADS  Google Scholar 

  32. Y. Okuno, S. Okuda, T. Oka, S. Kawakita, M. Imaizumi, Performance degradation of InGaP solar cells due to 70 keV electron irradiation. Jpn. J. Appl. Phys. 56, 081203 (2017). https://doi.org/10.7567/JJAP.56.081203

    Article  ADS  Google Scholar 

  33. International Atomic Energy Agency, Thorium fuel cycle. Potential benefits and challenges, IAEA-TECDOC-1450, Vienna (2005).

  34. B. Kınacı, Y. Özen, T. Asar, S.Ş Çetin, T. Memmedli, M. Kasap, S. Özçelikt, Study on growth and characterizations of GaxIn1−xP/GaAs solar cell structure. J. Mater. Sci. 24, 3269–3274 (2013). https://doi.org/10.1007/s10854-013-1242-y

    Article  Google Scholar 

  35. S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, 3rd edn. (Interscience, New York, 2006)

    Book  Google Scholar 

  36. https://www.ioffe.ru/SVA/NSM/Semicond/GaAs/basic.html. Accessed 28 June 2023

  37. https://www.ioffe.ru/SVA/NSM/Semicond/GaInP/basic.html. Accessed 28 June 2023

  38. S. Keith, J.R. Doyle, C. Harper et al., Toxicological Profile for Radon (Agency for Toxic Substances and Disease Registry (US), Atlanta, 2012)

    Google Scholar 

  39. J. Magill, G. Pfennig, J. Galy, Karlsruher Nuklidkarte, 7 (European Commission Joint Research Centre Institute for Transuranium Elements, 2006)

    Google Scholar 

  40. K.E. Bower, Y.A. Barbanel, Y.G. Shreter, G.W. Bohnert, Polymers, Phosphors, and Voltaics for Radioisotope Microbatteries, 1st edn. (CRC Press, New York, 2002)

    Book  Google Scholar 

  41. A.W. Haas, J.R. Wilcox, J.L. Gray, R.J. Schwartz, Design of a GaInP/GaAs tandem solar cell for maximum daily, monthly, and yearly energy output. J. Photon. Energy. 1, 018001 (2011)

    Article  Google Scholar 

  42. M.E. Levinshtein, S.L. Rumyantsev, M. Shur, Handbook Series on Semiconductor Parameters, 1st edn. (World Scientific, London, 1996), pp.77–103

    Book  Google Scholar 

  43. A. Dargys, J. Kundrotas, Handbook on Physical Properties of Ge, Si, GaAs and InP, Vilnius (Science and Encyclopedia Publishers, 1994)

    Google Scholar 

  44. M.Y. Ghannam, A.S. Al Omar, N. Posthuma, G. Flammand, J. Poortmans, Optimization of the triple junction In0.5Ga0.5P/GaAs/Ge monolithic tandem cell aimed for terrestrial applications using an experimentally verified analytical model. Kuwait J. Sci. Eng. 31(2), 203–234 (2004)

    Google Scholar 

  45. S.C. Jain, D.J. Roulston, A simple expression for band gap narrowing (BGN) in heavily doped Si, Ge, GaAs and GexSi1-x strained layers. Solid-State Electron. 34(5), 453–465 (1991)

    Article  ADS  Google Scholar 

  46. D.M. Caughey, R.E. Thomas, Carrier mobilities in silicon empirically related to doping and field. Proc. IEEE 55, 2192 (1967)

    Article  Google Scholar 

  47. M. Sotoodeh, A.H. Khalid, A.A. Rezazadeh, Empirical low-field mobility model for III–V compounds applicable in device simulation codes. J. Appl. Phys. 87, 2890 (2000)

    Article  ADS  Google Scholar 

  48. T.R. Alam, M.A. Pierson, Principles of betavoltaic battery design. J. Energy Power Sources 3(1), 11–41 (2016)

    Google Scholar 

  49. Y. Da, Y. Xuan, Role of surface recombination in affecting the efficiency of nanostructured thin-film solar cells. Opt. Express 21(S6), 1065–1077 (2013). https://doi.org/10.1364/OE.21.0A1065

    Article  ADS  Google Scholar 

  50. F. Saeed, T.U. Rehman, A. Zohaib, A. Farid, M.H. Khan, M.A. Khan, H.A. Tauqeer, A. Idrees, Unveiling surface recombination velocity influence on the device characteristics for the formamidinium perovskite solar cell. Eng. Proc. 20(4), 1–6 (2022). https://doi.org/10.3390/engproc2022020004

    Article  Google Scholar 

  51. T.P. Weiss, B. Bissig, T. Feurer, R. Carron, S. Buecheler, A.N. Tiwari, Bulk and surface recombination properties in thin film semiconductors with different surface treatments from time resolved photoluminescence measurements. Sci. Rep. 9, 5385 (2019). https://doi.org/10.1038/s41598-01941716-x

    Article  ADS  Google Scholar 

  52. K. Ali, H.M. Khan, M. Anmol, I.A. Ahmad, W.A. Farooq, B.A. Al-Asbahi, S.M. Qaid, H.M. Ghaithan, Effect of surface recombination velocity (SRV) on the efficiency of silicon solar cell. J. Optoelectron. Adv. Mater. 22(5–6), 251–255 (2020)

    Google Scholar 

  53. F. Bouzid, Prediction of the conversion efficiency of a GaSb thermophotovoltaic converter heated by radioisotope source. Int. J. Renew. Energy Res. 3(3), 717–724 (2013)

    Google Scholar 

  54. F. Bouzid, N. Benaziez, Modeling of InGaN/GaAs photovoltaic tandem with GaAs/AlAs bragg mirror rear surface reflector. Int. J. Renew. Energy Res. 4(3), 757–764 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Bouzid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouzid, F., Kayahan, E. & Pezzimenti, F. Thorium-228 as emitting source for InGaP/GaAs-based heterojunction alphavoltaic cells. Appl. Phys. A 129, 554 (2023). https://doi.org/10.1007/s00339-023-06829-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06829-1

Keywords

Navigation