Skip to main content

Advertisement

Log in

Effect of the orientation polarization and texturing on nano-mechanical and piezoelectric properties of PZT (52/48) films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ferroelectric (piezoelectric) Pb (Zr0.52Ti0.48) O3 (PZT) films were synthesized using an aerosol-assisted chemical vapor deposition technique on (111) Pt/Ti/SiO2/Si substrates. The optimum deposition temperature was 350 °C, followed by annealing at 650 °C for 1 h. Tetragonal perovskite phase and preferred orientation {0 0 1} in the PZT films were determined by two-dimensional grazing incidence diffraction using synchrotron X-ray radiation and nano-beam electron diffraction (NBED). The PZT film grains’ texture, represented by inverse pole representation, correlates with (0 0 1) and (1 1 1) orientations with approximate XRD peak distribution width of Ω ≈ 35°. The elastic-to-plastic transition of the piezoelectric-based structural deformation of the PZT films is represented by the pop-in, which marks the limit in the elastic behavior at the yield stress for which the material starts exhibiting permanent deformation, with the yield point being Y = 2.5 ± 0.7 GPa for the Pb (Zr0.52Ti0.48) O3 film. The hardness (H = 7.5 ± 0.16 GPa), elastic modulus (E = 126 ± 3 GPa), and scratching were evaluated at the nanoscale, using a nanoindentation technique. No delamination or cracks were observed near the residual scratching stage. The switching of piezoelectric domains and domain polarization process, as a function of films’ texture, in the representative Pb (Zr0.52Ti0.48) O3 films, were studied using Piezoresponse Force Microscopy (PFM). The values of the saturation polarization, remnant polarization, coercive field, and piezoelectric constant were Ps = 45 μC/cm2, Pr =30 μC/cm2, Ec = 22 kV/cm, and d33 = 137 pm/V, respectively. The local piezoelectric hysteresis loops and film nanostructure correlate with the polarization orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10:

Similar content being viewed by others

References

  1. D.G. Wang, C.Z. Chen, J. Ma, T.H. Liu, Appl. Surf. Sci. 255, 1637–1645 (2008). https://doi.org/10.1016/j.apsusc.2008.09.053

    Article  ADS  Google Scholar 

  2. G.D. Shilpa, K. Sreelakshmi, M.G. Ananthaprasad, I.O.P. Conf, Ser. Mater. Sci. Eng. 149, 1–8 (2016). https://doi.org/10.1088/1757-899X/149/1/012190

    Article  Google Scholar 

  3. S. Monga, N. Sharma, N. Mehan, A. Singh, Ceram. Int. (2022). https://doi.org/10.1016/j.ceramint.2022.05.039

    Article  Google Scholar 

  4. T. Avanish Babu, W. Madhuri, Chem. Phys. Lett. 799, 139641 (2022). https://doi.org/10.1016/j.cplett.2022.139641

    Article  Google Scholar 

  5. Z. Xu, W.H. Chan, Acta Mater. 55, 3923–3928 (2007). https://doi.org/10.1016/j.actamat.2007.03.008

    Article  ADS  Google Scholar 

  6. M. Lisca, L. Pintilie, M. Alexe, C.M. Teodorescu, Appl. Surf. Sci. 252, 4549–4552 (2006). https://doi.org/10.1016/j.apsusc.2005.07.149

    Article  ADS  Google Scholar 

  7. K.M. Byun, W.J. Lee, Curr. Appl. Phys. 7, 113–117 (2007). https://doi.org/10.1016/j.cap.2006.02.003

    Article  ADS  Google Scholar 

  8. J.M. Koo, S. Kim, S. Shin, Y. Park, J.K. Lee, Ceram. Int. 34, 1003–1006 (2008). https://doi.org/10.1016/j.ceramint.2007.09.067

    Article  Google Scholar 

  9. M. Veith, M. Bender, T. Lehnert, M. Zimmer, A. Jakob, Dalt. Trans. 40, 1175–1182 (2011). https://doi.org/10.1039/c0dt00830c

    Article  Google Scholar 

  10. D. Bao, X. Yao, N. Wakiya, K. Shinozaki, N. Mizutani, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 94, 269–274 (2002). https://doi.org/10.1016/S0921-5107(02)00131-9

    Article  Google Scholar 

  11. Y.Y. Tomashpol’skii, L.F. Rybakova, T.V. Lunina, O.F. Fedoseeva, S.G. Prutchenko, S.A. Men’shikh, Inorg. Mater. 37, 500–507 (2001). https://doi.org/10.1023/A:1017537102999

    Article  Google Scholar 

  12. J. Ramos-Cano, A. Hurtado-Macías, W. Antúnez-Flores, L. Fuentes-Cobas, J. González-Hernández, P. Amézaga-Madrid, M. Miki-Yoshida, Thin Solid Films 531, 179–184 (2013). https://doi.org/10.1016/j.tsf.2013.01.021

    Article  ADS  Google Scholar 

  13. N. Ledermann, P. Muralt, J. Baborowski, S. Gentil, K. Mukati, M. Cantoni, A. Seifert, N. Setter, Sensors Actuators A Phys. 105, 162–170 (2003). https://doi.org/10.1016/S0924-4247(03)00090-6

    Article  Google Scholar 

  14. R. Takei, N. Makimoto, H. Okada, T. Itoh, T. Kobayashi, Design of piezoelectric MEMS cantilever for low-frequency vibration energy harvester. Jpn. J. Appl. Phys. (2016). https://doi.org/10.7567/JJAP.55.06GP14

    Article  Google Scholar 

  15. K. Uchino, Ferroelectrics devices (CRC Press, Boca Raton, 2009)

    Google Scholar 

  16. E.A. Eliseev, S.V. Kalinin, S. Jesse, S.L. Bravina, A.N. Morozovska, J. Appl. Phys. (2007). https://doi.org/10.1063/1.2749463

    Article  Google Scholar 

  17. S. Jesse, A.P. Baddorf, S.V. Kalinin, Appl. Phys. Lett. 88, 062908 (2006). https://doi.org/10.1063/1.2172216

    Article  ADS  Google Scholar 

  18. M. Prabu, I.B. Shameem Banu, S. Gobalakrishnan, P.K. Praseetha, J. Mater. Sci. Mater. Electron. 27, 5351–5356 (2016). https://doi.org/10.1007/s10854-016-4434-4

    Article  Google Scholar 

  19. N. Vittayakorn, G. Rujijanagul, D.P. Cann, J. Alloys Compd. 440, 259–264 (2007). https://doi.org/10.1016/j.jallcom.2006.09.028

    Article  Google Scholar 

  20. D. Perednis, L.J. Gauckler, J. Electroceramics. 14, 103–111 (2005). https://doi.org/10.1007/s10832-005-0870-x

    Article  Google Scholar 

  21. K.L. Choy, Prog. Mater. Sci. 48, 57–170 (2003). https://doi.org/10.1016/S0079-6425(01)00009-3

    Article  Google Scholar 

  22. M. Cruz, L. Hernán, J. Morales, L. Sánchez, J. Power Sources. 108, 35–40 (2002). https://doi.org/10.1016/S0378-7753(02)00006-X

    Article  ADS  Google Scholar 

  23. D. Pérez-Mezcua, R. Sirera, I. Bretos, J. Ricote, R. Jimenez, L. Fuentes-Cobas, R. Escobar-Galindo, D. Chateigner, M. Lourdes Calzada, J. Am. Ceram. Soc. 97, 1269–1275 (2014). https://doi.org/10.1111/jace.12753

    Article  Google Scholar 

  24. L. Fuentes-Montero, M.E. Montero-Cabrera, L. Fuentes-Cobas, J. Appl. Crystallogr. 44, 241–246 (2011). https://doi.org/10.1107/S0021889810048739

    Article  Google Scholar 

  25. E.E. Villalobos-Portillo, D.C. Burciaga-Valencia, L. Fuentes-Montero, M.E. Montero-Cabrera, D. Chateigner, L.E. Fuentes-Cobas, Bol. La Soc. Esp. Ceram. y Vidr. 59, 219–228 (2020). https://doi.org/10.1016/j.bsecv.2019.12.002

    Article  Google Scholar 

  26. D.A. Northrop, J. Am. Ceram. Soc. 50, 441–445 (1967). https://doi.org/10.1111/j.1151-2916.1967.tb15157.x

    Article  Google Scholar 

  27. Y. Ma, J. Song, X. Wang, Y. Liu, J. Zhou, Coatings 11, 944 (2021). https://doi.org/10.3390/coatings11080944

    Article  Google Scholar 

  28. J.B. Pethica, W.C. Oliver, Phys. Scr. 1987, 61–66 (1987). https://doi.org/10.1088/0031-8949/1987/T19A/010

    Article  Google Scholar 

  29. X. Li, B. Bhushan, Mater. Charact. 48, 11–36 (2002). https://doi.org/10.1016/S1044-5803(02)00192-4

    Article  Google Scholar 

  30. W.C. Oliver, G.M. Pharr, J. Mater. Res. 19, 3–20 (2004). https://doi.org/10.1557/jmr.2004.19.1.3

    Article  ADS  Google Scholar 

  31. A.C. Fischer-Cripps, J. Mater. Res. 16, 3050–3052 (2001). https://doi.org/10.1557/JMR.2001.0421

    Article  ADS  Google Scholar 

  32. I.N. Sneddon, Int. J. Eng. Sci. 3, 47–57 (1965). https://doi.org/10.1016/0020-7225(65)90019-4

    Article  Google Scholar 

  33. A. Fischer-Cripps, D. Nicholson, Nanoindentation. mechanical engineering series. Am. Soc. Mech. Eng. Digital Collect. (2004). https://doi.org/10.1115/1.1704625

    Article  Google Scholar 

  34. M.V. Swain, J.T. Hagan, J. Phys. D. Appl. Phys. 9, 2201–2214 (1976). https://doi.org/10.1088/0022-3727/9/15/011

    Article  ADS  Google Scholar 

  35. J. Ramos-Cano, M. Miki-Yoshida, A.M. Gonçalves, J.A. Eiras, J. González-Hernández, J.A. Rodríguez-López, P. Amézaga-Madrid, A. Hurtado-Macías, Ind. Eng. Chem. Res. 52, 14328–14334 (2013). https://doi.org/10.1021/ie401134m

    Article  Google Scholar 

  36. S.C. Hwang, C.S. Lynch, R.M. McMeeking, Acta Metall. Mater. 43, 2073–2084 (1995). https://doi.org/10.1016/0956-7151(94)00379-V

    Article  Google Scholar 

  37. A.B. Schäufele, K.H. Härdtl, J. Am. Ceram. Soc. 79, 2637–2640 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb09027.x

    Article  Google Scholar 

  38. Y. Gaillard, A.H. Macías, J. MũozSaldãa, M. Anglada, G. Trpaga, J. Phys. D. Appl. Phys. (2009). https://doi.org/10.1088/0022-3727/42/8/085502

    Article  Google Scholar 

  39. M.C. Rodríguez-Aranda, F. Calderón-Piñar, F.J. Espinoza-Beltrán, F.J. Flores-Ruiz, E. León-Sarabia, R. Mayén-Mondragón, J.M. Yáñez-Limón, J. Mater. Sci. Mater. Electron. 25, 4806–4813 (2014). https://doi.org/10.1007/s10854-014-2237-z

    Article  Google Scholar 

  40. H.D. Chen, K.R. Udayakumar, C.J. Gaskey, L.E. Cross, Appl. Phys. Lett. 67, 3411 (1998). https://doi.org/10.1063/1.115263

    Article  ADS  Google Scholar 

  41. D. Bao, X. Yao, K. Shinozaki, N. Mizutani, J. Cryst. Growth. 259, 352–357 (2003). https://doi.org/10.1016/j.jcrysgro.2003.08.004

    Article  ADS  Google Scholar 

  42. X. Zhao, J.Y. Dai, X.G. Tang, J. Wang, H.L.W. Chan, C.L. Choy, Appl. Phys. A Mater. Sci. Process. 81, 997–1000 (2005). https://doi.org/10.1007/s00339-004-2977-3

    Article  ADS  Google Scholar 

  43. J.E. Leal-Perez, G. Herrera-Perez, G.V. Umoh, A. Hurtado-Macias, Mater. Chem. Phys. 284, 126033 (2022). https://doi.org/10.1016/j.matchemphys.2022.126033

    Article  Google Scholar 

  44. A. Roelofs, U. Böttger, R. Waser, F. Schlaphof, S. Trogisch, L.M. Eng, Appl. Phys. Lett. 77, 3444–3446 (2000). https://doi.org/10.1063/1.1328049

    Article  ADS  Google Scholar 

  45. Z. Chen, J. Huang, Y. Yang, Y. Wang, Y. Wu, H. He, X. Wei, Z. Ye, H. Zeng, H. Cong, Z. Jiang, RSC Adv. 2, 7380–7383 (2012). https://doi.org/10.1039/c2ra20237a

    Article  ADS  Google Scholar 

  46. H.B. Kang, J. Chang, K. Koh, L. Lin, Y.S. Cho, A.C.S. Appl, Mater. Interfaces. 6, 10576–10582 (2014). https://doi.org/10.1021/am502234q

    Article  Google Scholar 

  47. Q. Guo, G.Z. Cao, I.Y. Shen, Measurements of piezoelectric coefficient d33 of lead zirconate titanate thin films using a mini force hammer. Am. Soc. Mech. Eng. Digital Collect. (2013). https://doi.org/10.1115/1.4006881/379183

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely appreciate the technical support of TEM and AFM characterization to the following colleagues; Roberto P. Talamantes, Glory V. Umoh, Oscar Solis Canto, E. Cruz-Solano, and J. E. Leal-Perez. O. Auciello acknowledges the University of Texas-Dallas for support through his Distinguished Endowed Chair grant, to work on the project, which science is described in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hurtado-Macías.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos-Cano, C.J., Miki-Yoshida, M., Herrera-Basurto, R. et al. Effect of the orientation polarization and texturing on nano-mechanical and piezoelectric properties of PZT (52/48) films. Appl. Phys. A 129, 113 (2023). https://doi.org/10.1007/s00339-022-06374-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06374-3

Keywords

Navigation