Skip to main content
Log in

Low-temperature fabrication of high-performance AlN/Ag/AlN thin films for transparent electrode applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Highly transparent and conductive AlN/Ag/AlN thin films were prepared by magnetron sputtering on glass and PET substrates at room temperature. The AlN/Ag/ AlN thin films on glass showed a wide optical window with high transmittance over the wavelength range of 300–800 nm. By varying the thickness values of the top and bottom AlN layers, the transmittance of the Ag layers as well as the position of the maximum transmittance can be modulated. At the optimized values of thickness for the top and bottom AlN layers, the AlN/Ag/AlN electrode exhibited the average transmittance of 72.6% and 82.3% in ultraviolet and visible wavelength range of 300–400 nm and 400–800 nm, respectively, along with a sheet resistance of 7.52 Ω/sq and the corresponding Haacke figure of merit of 1.90 × 10–2 Ω−1. Additionally, the smooth surface with RMS roughness less than 1 nm and the good flexibility of the multilayer structures were demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. K. Ellmer, Nat. Photonics. 6, 809–817 (2012)

    Article  ADS  Google Scholar 

  2. Z. Zhao, T.L. Alford, Sol. Energ. Mat. Sol. C. 157, 599–603 (2016)

    Article  Google Scholar 

  3. P. Li, H. Li, J. Ma et al., Adv. Mater. Interfaces. 5(24), 18012872018 (2018)

    Google Scholar 

  4. D. Choi, J. Nanosci. Nanotechnol. 20, 379–383 (2020)

    Article  Google Scholar 

  5. V. Sharma, P. Kumar, A. Kumar et al., Sol. Energ. Mat. Sol. C. 169, 122–131 (2017)

    Article  Google Scholar 

  6. C. Guillén, J. Herrero, Thin Solid Films 520, 1–17 (2011)

    Article  ADS  Google Scholar 

  7. G. Zhao, W. Wang, T.-S. Bae et al., Nat. Commun. 6, 8830 (2015)

    Article  ADS  Google Scholar 

  8. T.-V. Dang, S.V.N. Pammi, J. Choi et al., Sol. Energ. Mat. Sol. C. 163, 58–65 (2017)

    Article  Google Scholar 

  9. C. Zhe, J. Huang, Z.R. Chen et al., J. Electron. Mater. 49, 4498–4503 (2020)

    Article  ADS  Google Scholar 

  10. C.C. Chiou, F.H. Hsu, S. Petrov et al., Opt. Express. 27(12), 16911 (2019)

    Article  ADS  Google Scholar 

  11. S. Strite, H. Morkoç, J. Vac. Sci. Technol. B. 10, 1237 (1992)

    Article  Google Scholar 

  12. P.-H. Hung, C.-Y. Li, K.-P. Min et al., AIP Adv. 10, 045017 (2020)

    Article  ADS  Google Scholar 

  13. B. Tang, H. Hua, H. Wan et al., Appl. Surf. Sci. 518, 146218 (2020)

    Article  Google Scholar 

  14. X.-Y. Zhao, B. Tang, L.-Y. Gong et al., Appl. Phys. Lett. 118, 182102 (2021)

    Article  ADS  Google Scholar 

  15. H.-P. Hu, B. Tang, H. Wan et al., Nano Energy 69, 104427 (2020)

    Article  Google Scholar 

  16. S.-J. Zhou, Z. Wan, Y. Lei et al., Opt. Lett 47(5), 1291–1294 (2022)

    Article  ADS  Google Scholar 

  17. M. Ferrara, A. Castaldo, S. Esposito et al., Surf. Coat. Tech. 295, 2–7 (2016)

    Article  Google Scholar 

  18. A. Bingel, M. Steglich, P. Naujok et al., Thin Solid Films 616, 594–600 (2016)

    Article  ADS  Google Scholar 

  19. J.-H. Kim, S.-N. Kwon, S.-I. NaBull et al., Korean Chem. Soc. 38, 856–860 (2017)

    Article  Google Scholar 

  20. K.-M. Lin, R.-L. Lin, W.-T. Hsiao, J. Mater. Sci: Mater. Electron. 28, 12363–12371 (2017)

    Google Scholar 

  21. J.H. Kim, H. Lee, J.-Y. Na, Curr. Appl. Phys. 15, 452–455 (2015)

    Article  ADS  Google Scholar 

  22. S.-V. Eek, X. Yan, W. Li et al., J. J. Appl. Phys. 56, 08MA12 (2017)

    Article  Google Scholar 

  23. Y.-C. Fang, J.-J. He, K. Zhang et al., Opt. Lett. 40(23), 5455–5458 (2015)

    Article  ADS  Google Scholar 

  24. Q. Zhang, Y. Zhao, Z. Jia et al., Energies 9, 443 (2016)

    Article  Google Scholar 

  25. C.-Q. Gui, X.-H. Ding, S.-G. Zhou et al., Opt. Laser. Technol. 104, 112 (2018)

    Article  ADS  Google Scholar 

  26. X. Lu, Y. Zhang, Z. Zheng et al., Adv. Electron. Mater. 7, 2001121 (2021)

    Article  Google Scholar 

  27. H. Han, N.D. Theodore, T.L. Alford, J. Appl. Phys. 103, 13708 (2008)

    Article  ADS  Google Scholar 

  28. J. Leng, Z. Yu, W. Xue et al., J. Appl. Phys. 108, 073109 (2010)

    Article  ADS  Google Scholar 

  29. M.-Q. Zhu, H.-D. Jin, P.-Q. Bi et al., J. Phys. D: Appl. Phys. 49, 115108 (2016)

    Article  ADS  Google Scholar 

  30. S. Singh, V. Sharma, D. Saini et al., AIP Conf. Proc. 1832, 080008 (2017)

    Article  Google Scholar 

  31. A. Rayerfrancis, B.P. Bhargav, N. Ahmed et al., Eur. Phys. J. Appl. Phys. 82, 20301 (2018)

    Article  ADS  Google Scholar 

  32. A. Lakhonchai, A. Chingsungnoen, P. Poolcharuansin et al., Mater. Res. Express. 6, 126410 (2019)

    Article  ADS  Google Scholar 

  33. C.-H. Cheng, J.-M. Ting, Thin Solid Films 516, 203–207 (2007)

    Article  ADS  Google Scholar 

  34. D. Kim, Appl. Surf. Sci. 256, 1774–1777 (2010)

    Article  ADS  Google Scholar 

  35. X. Guo, J. Lin, H. Chen et al., J. Mater. Chem. 22, 17176 (2012)

    Article  Google Scholar 

  36. L. Cattin, J.-C. Bernède, M. Morsli, Phys. Status. Solidi A. 210, 1047–1061 (2013)

    Article  ADS  Google Scholar 

  37. M. Ghasemi Varnamkhasti, E. Shahriari, Superlattice Microst. 69, 231–238 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Project of Education Department of Hunan Province (No. 20C0574) and the Key scientific research projects of Hunan Institute of Technology (No. HY22022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Zhu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, K., Yang, K. Low-temperature fabrication of high-performance AlN/Ag/AlN thin films for transparent electrode applications. Appl. Phys. A 128, 1038 (2022). https://doi.org/10.1007/s00339-022-06195-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06195-4

Keywords

Navigation