Skip to main content
Log in

Tailoring critical material properties of some ternary glasses through ZnO/CdO alteration: a focusing study on multiple behavioral changes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We present the optical, physical, and alpha/proton absorption properties of C-type P2O5–TeO2–ZnO ternary glass structures with a nominal composition of 20P2O5.30TeO2. (50-x)ZnO.xCdO (x = 15, 20, 30, 40 mol%). Using experimental methods, the physical and optical features of manufactured glasses are measured. The densities of the produced samples are increased due to ZnO/CdO translocation. Sixteen different bands are obtained as a result of deconvolution process. The C20 sample is reported with the largest optical band gap (3.530 eV) while the C15 sample is reported with the lowest (3.450 eV). According to our results, keeping the CdO concentration of ternary glasses around 40% is crucial for maintaining the glassy structure since glassy structure is distorted when %50 CdO (i.e., C50 sample) is incorporated into the glass structure. The shortest distances that alpha and protons may travel at the same energy levels are found in the C40 sample, which has the largest CdO contribution and the highest glass density. Due to the C40 sample’s greatest resistance to the movement of heavy particles within the material, this is the case. Our results have shown that 40% CdO contribution improves absorption of alpha and protons within the absorber material. Due to their great transparency and promising material features, it can be concluded that ternary glasses containing CdO might serve as excellent glass shields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Available upon reasonable request.

References

  1. P. Pascuta, G. Borodi, N. Jumate, I. Vida-Simiti, D. Viorel, E. Culea, The structural role of manganese ions in some zinc phosphate glasses and glass ceramics. J. alloy. Compd. 504(2), 479–483 (2010). https://doi.org/10.1016/j.jallcom.2010.05.147

    Article  Google Scholar 

  2. B. Tischendorf, J.U. Otaigbe, J.W. Wiench, M. Pruski, B.C. Sales, A study of short and intermediate range order in zinc phosphate glasses. J. non-cryst. solids 282(2–3), 147–158 (2001). https://doi.org/10.1016/S0022-3093(01)00350-7

    Article  ADS  Google Scholar 

  3. N. Kerkouri, M. Haddad, M. Et-Tabirou, A. Chahine, L. Laanab, FTIR, Raman, EPR and optical absorption spectral studies on V2O5-doped cadmium phosphate glasses. Phys. B Condens. Matter 406(17), 3142–3148 (2011). https://doi.org/10.1016/j.physb.2011.04.057

    Article  ADS  Google Scholar 

  4. E. Mansour, G. El-Damrawi, Electrical properties and FTIR spectra of ZnO–PbO–P2O5 glasses. Phys. B Condens. Matter 405(8), 2137–2143 (2010). https://doi.org/10.1016/j.physb.2010.01.121

    Article  ADS  Google Scholar 

  5. G. Kilic, E. Ilik, K.A. Mahmoud, F.I. El-Agawany, S. Alomairy, Y.S. Rammah, The role of B2O3 on the structural, thermal, and radiation protection efficacy of vanadium phosphate glasses. Appl. Phys. A 127(4), 1–16 (2021). https://doi.org/10.1007/s00339-021-04409-9

    Article  Google Scholar 

  6. U.G. Issever, G. Kilic, E. Ilik, The impact of CuO on physical, structural, optical and thermal properties of dark VPB semiconducting glasses. Opt. Mate. 116, 111084 (2021). https://doi.org/10.1016/j.optmat.2021.111084

    Article  Google Scholar 

  7. T. Konishi, T. Hondo, T. Araki, K. Nishio, T. Tsuchiya, T. Matsumoto, S. Suehara, S. Todoroki, S. Inoue, Investigation of glass formation and color properties in the P2O5–TeO2–ZnO system. J. Non-Cryst. Solids 324(1–2), 58–66 (2003). https://doi.org/10.1016/S0022-3093(03)00187-X

    Article  ADS  Google Scholar 

  8. D.K. Durga, N. Veeraiah, Role of manganese ions on the stability of ZnF2–P2O5–TeO2 glass system by the study of dielectric dispersion and some other physical properties. J. Phys. Chem. Solids 64(1), 133–146 (2003). https://doi.org/10.1016/S0022-3697(02)00273-1

    Article  ADS  Google Scholar 

  9. P. Mošner, K. Vosejpková, L. Koudelka, L. Montagne, B. Revel, Structure and properties of glasses in ZnO–P2O5–TeO2 system. J. non-cryst. solids 357(14), 2648–2652 (2011). https://doi.org/10.1016/j.jnoncrysol.2010.12.052

    Article  ADS  Google Scholar 

  10. G. Kilic, E. Ilik, S.A. Issa, H.O. Tekin, Synthesis and structural, optical, physical properties of Gadolinium (III) oxide reinforced TeO2–B2O3–(20–x) Li2O-xGd2O3 glass system. J. Alloy. Compd. 877, 160302 (2021). https://doi.org/10.1016/j.jallcom.2021.160302

    Article  Google Scholar 

  11. E. Ilik, G. Kilic, U.G. Issever, S.A. Issa, H.M. Zakaly, H.O. Tekin, Cerium (IV) oxide reinforced Lithium-Borotellurite glasses: a characterization study through physical, optical, structural and radiation shielding properties. Ceram. Int. 48(1), 1152–1165 (2022). https://doi.org/10.1016/j.ceramint.2021.09.200

    Article  Google Scholar 

  12. O.A. Zamyatin, M.F. Churbanov, J.A. Medvedeva, S.A. Gavrin, E.V. Zamyatina, A.D. Plekhovich, Glass-forming region and optical properties of the TeO2–ZnO–NiO system. J. Non-Cryst. Solids 479, 29–41 (2018). https://doi.org/10.1016/j.jnoncrysol.2017.10.005

    Article  ADS  Google Scholar 

  13. E. Ilik, E. Kavaz, G. Kilic, S.A. Issa, ALMisned, G., & Tekin, H. O., Synthesis and characterization of vanadium (V) oxide reinforced calcium-borate glasses: experimental assessments on Al2O3/BaO2/ZnO contributions. J. of Non-Cryst. Solids 580, 121397 (2022). https://doi.org/10.1016/j.jnoncrysol.2022.121397

    Article  Google Scholar 

  14. E. Ilik, Effect of heavy rare-earth element oxides on physical, optical and gamma-ray protection abilities of zinc-borate glasses. Appl. Phys. A 128, 496 (2022). https://doi.org/10.1007/s00339-022-05642-6

    Article  ADS  Google Scholar 

  15. M.M. Hivrekar, D.B. Sable, M.B. Solunke, K.M. Jadhav, Different property studies with network improvement of CdO doped alkali borate glass. J. Non-Cryst. Solids 491, 14–23 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.03.051

    Article  ADS  Google Scholar 

  16. S. Sindhu, S. Sanghi, S. Rani, A. Agarwal, V.P. Seth, Modification of structure and electrical conductivity of cadmium borate glasses in the presence of V2O5. Mater. Chem. Phys. 107(2–3), 236–243 (2008). https://doi.org/10.1016/j.matchemphys.2007.07.005

    Article  Google Scholar 

  17. S. Arivazhagan, K.A. Naseer, K.A. Mahmoud, K.A. Kumar, N.K. Libeesh, M.I. Sayyed, M.S. Alqahtani, E.S. Yousef, M.U. Khandaker, Gamma-ray protection capacity evaluation and satellite data based mapping for the limestone, charnockite, and gneiss rocks in the Sirugudi taluk of the Dindigul district. India Radiat. Phys. Chem. 196, 110108 (2022). https://doi.org/10.1016/j.radphyschem.2022.110108

    Article  Google Scholar 

  18. N.K. Libeesh, K.A. Naseer, K.A. Mahmoud, M.I. Sayyed, S. Arivazhagan, M.S. Alqahtani, M.U. Khandaker, Applicability of the multispectral remote sensing on determining the natural rock complexes distribution and their evaluability on the radiation protection applications. Radiat. Phys. Chem. 193, 110004 (2022). https://doi.org/10.1016/j.radphyschem.2022.110004

    Article  Google Scholar 

  19. N.K. Libeesh, K.A. Naseer, S. Arivazhagan, K.A. Mahmoud, M.I. Sayyed, M.S. Alqahtani, Multispectral remote sensing for determination the Ultra-mafic complexes distribution and their applications in reducing the equivalent dose from the radioactive wastes. Eur. Phys. J. Plus 137(2), 267 (2022). https://doi.org/10.1140/epjp/s13360-022-02473-5

    Article  Google Scholar 

  20. N.K. Libeesh, K.A. Naseer, S. Arivazhagan, A.F. Abd El-Rehim, ALMisned, G., & Tekin, H. O., Characterization of Ultramafic–Alkaline–Carbonatite complex for radiation shielding competencies: an experimental and Monte Carlo study with lithological mapping. Ore Geol. Rev. 142, 104735 (2022). https://doi.org/10.1016/j.oregeorev.2022.104735

    Article  Google Scholar 

  21. G. Kilic, E. Kavaz, E. Ilik, G. ALMisned, H.O. Tekin, CdO-rich quaternary tellurite glasses for nuclear safety purposes: Synthesis and experimental gamma-ray and neutron radiation assessment of high-density and transparent samples. Opt. Mater. 129, 112512 (2022). https://doi.org/10.1016/j.optmat.2022.112512

    Article  Google Scholar 

  22. E. Kavaz, E. Ilik, G. Kilic, ALMisned, G., & Tekin, H. O., Synthesis and experimental characterization on fast neutron and gamma-ray attenuation properties of high-dense and transparent Cadmium oxide (CdO) glasses for shielding purposes. Ceram. Int. Artic. Press. (2022). https://doi.org/10.1016/j.ceramint.2022.04.338

    Article  Google Scholar 

  23. G. Kilic, U.G. Issever, E. Ilik, Synthesis, characterization and crystalline phase studies of TeO2–Ta2O5–ZnO/ZnF2 oxyfluoride semiconducting glasses. J. Non-Cryst. Solids 527, 119747 (2020). https://doi.org/10.1016/j.jnoncrysol.2019.119747

    Article  Google Scholar 

  24. J. de Clermont-Gallerande, D. Taniguchi, M. Colas, P. Thomas, T. Hayakawa, Influence of Nd3+ modifying on 80TeO2–xZnO–(20–x) Na2O ternary glass system. APL Mater. 9(11), 111111 (2021). https://doi.org/10.1063/5.0061880

    Article  ADS  Google Scholar 

  25. E. Courtens, M. Foret, B. Hehlen, R. Vacher, The vibrational modes of glasses. Solid State Commun. 117(3), 187–200 (2001). https://doi.org/10.1016/S0038-1098(00)00434-8

    Article  ADS  Google Scholar 

  26. J. de Clermont-Gallerande, S. Saito, M. Colas, P. Thomas, T. Hayakawa, New understanding of TeO2–ZnO–Na2O ternary glass system. J. Alloy. Compd. 854, 157072 (2021). https://doi.org/10.1016/j.jallcom.2020.157072

    Article  Google Scholar 

  27. M.M. Hivrekar, D.B. Sable, M.B. Solunke, K.M. Jadhav, Network structure analysis of modifier CdO doped sodium borate glass using FTIR and Raman spectroscopy. J. Non-Cryst. Solids 474, 58–65 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.08.028

    Article  ADS  Google Scholar 

  28. I. Shaltout, T.A. Mohamed, Raman spectrum, quantum mechanical calculations and vibrational assignments of (95% α-TeO2/5% Sm2O3) glass. Spectrochim. Acta Part A Mol. Spectrosc. 67(2), 450–454 (2007). https://doi.org/10.1016/j.saa.2006.08.001

    Article  ADS  Google Scholar 

  29. G. Lakshminarayana, K.M. Kaky, S.O. Baki, A. Lira, P. Nayar, I.V. Kityk, M.A. Mahdi, Physical, structural, thermal, and optical spectroscopy studies of TeO2–B2O3–MoO3–ZnO–R2O (R= Li, Na, and K)/MO (M= Mg, Ca, and Pb) glasses. J. Alloy. Compd. 690, 799–816 (2017). https://doi.org/10.1016/j.jallcom.2016.08.180

    Article  Google Scholar 

  30. N. Gupta, A. Kaur, A. Khanna, F. Gonzàlez, C. Pesquera, R. Iordanova, B. Chen, Structure-property correlations in TiO2-Bi2O3-B2O3-TeO2 glasses. J. Non-Cryst. Solids 470, 168–177 (2017). https://doi.org/10.1016/j.jnoncrysol.2017.05.021

    Article  ADS  Google Scholar 

  31. B. Afef, M.M. Alqahtani, H.H. Hegazy, E. Yousef, K. Damak, R. Maâlej, Green and near infrared emission of Er3+ doped PZS and PZC glasses. J. Lumin. 194, 706–712 (2018). https://doi.org/10.1016/j.jlumin.2017.09.040

    Article  Google Scholar 

  32. G. Kilic, U.G. Issever, E. Ilik, Characterization of Er3+ doped ZnTeTa semiconducting oxide glass. J. Mater. Sci. Mater. Electron. 30(9), 8920–8930 (2019). https://doi.org/10.1007/s10854-019-01220-4

    Article  Google Scholar 

  33. A. Chahine, M. Et-Tabirou, J.L. Pascal, FTIR and Raman spectra of the Na2O–CuO–Bi2O3–P2O5 glasses. Mater. Lett. 58(22–23), 2776–2780 (2004). https://doi.org/10.1016/j.matlet.2004.04.010

    Article  Google Scholar 

  34. J. Koo, B.S. Bae, H.K. Na, Raman spectroscopy of copper phosphate glasses. J. Non-cryst. solids 212(2–3), 173–179 (1997). https://doi.org/10.1016/S0022-3093(96)00651-5

    Article  ADS  Google Scholar 

  35. A.H. Hammad, E.B. Moustafa, Study some of the structural, optical, and damping properties of phosphate glasses containing borate. J. Non-Cryst. Solids 544, 120209 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120209

    Article  Google Scholar 

  36. Y.H. Elbashar, S.S. Moslem, H.H. Hassan, D.A. Rayan, Double bandpass filter and dual band gap study for NiO doped into P2O5–ZnO–Na2O glassy system. Phosphorus Sulfur Silicon Relat. Elem. 196(1), 61–70 (2020). https://doi.org/10.1080/10426507.2020.1800703

    Article  Google Scholar 

  37. C.N. Rao, P.V. Rao, R. Kameswari, R.R. Raju, G. Chandana, K. Samatha, M.V.V.K. Srinivas Prasad, M. Venkateswarlu, A. Naveen, G.G. Dhar, Luminescence investigations on Dy3+ doped CdO-PbF2 phosphate glass-ceramics. J. Mol. Struct. 1243, 130784 (2021). https://doi.org/10.1016/j.molstruc.2021.130784

    Article  Google Scholar 

  38. C. Dayanand, G. Bhikshamaiah, V.J. Tyagaraju, M. Salagram, A.S.R. Krishna Murthy, Structural investigations of phosphate glasses: a detailed infrared study of the x (PbO)-(1–x) P2O5 vitreous system. J. Mater. Sci. 31(8), 1945–1967 (1996). https://doi.org/10.1007/BF00356615.pdf

    Article  ADS  Google Scholar 

  39. P. Velusamy, R.R. Babu, K. Ramamurthi, E. Elangovan, J. Viegas, M. Sridharan, Spray deposited ruthenium incorporated CdO thin films for opto-electronic and gas sensing applications. J. Phys. Chem. Solids 112, 127–136 (2018). https://doi.org/10.1016/j.jpcs.2017.09.019

    Article  ADS  Google Scholar 

  40. T.M. Khan, T. Shahid, M. Zakria, R.I. Shakoor, Optoelectronic properties and temperature dependent mechanisms of composite-hydroxide-mediated approach for the synthesis of CdO nanomaterials. Electron. Mater. Lett. 11(3), 366–373 (2015). https://doi.org/10.1007/s13391-015-4134-x.pdf

    Article  ADS  Google Scholar 

  41. L.Y. Zhang, H. Li, L.L. Hu, Statistical structure analysis of GeO2 modified Yb3+: Phosphate glasses based on Raman and FTIR study. J. Alloy. Compd. 698, 103–113 (2017). https://doi.org/10.1016/J.JALLCOM.2016.12.175

    Article  Google Scholar 

  42. C.E. Smith, R.K. Brow, L. Montagne, B. Revel, The structure and properties of zinc aluminophosphate glasses. J. Non-cryst. solids 386, 105–114 (2014). https://doi.org/10.1016/J.JNONCRYSOL.2013.11.042

    Article  ADS  Google Scholar 

  43. K. Mariselvam, R.A. Kumar, The emission characteristics of Er3+: BBFB glasses for infra-red laser and gamma ray shielding applications. Optik 226, 165910 (2021). https://doi.org/10.1016/j.ijleo.2020.165910

    Article  ADS  Google Scholar 

  44. A. Chakrabarti, A.R. Molla, Synthesis of Eu2O3 doped BaO-TiO2-GeO2 based glass-ceramics: Crystallization kinetics, optical and electrical properties. J. Non-Cryst. Solids 505, 354–366 (2019). https://doi.org/10.1016/j.jnoncrysol.2018.11.002

    Article  ADS  Google Scholar 

  45. Z.H. Khan, S.A. Khan, N. Salah, S. Habib, S.M. Abdallah El-Hamidy, A.A. Al-Ghamdi, Effect of composition on electrical and optical properties of thin films of amorphous Ga x Se100−x nanorods. Nanoscale Res. Lett. 5(9), 1512–1517 (2010). https://doi.org/10.1007/s11671-010-9671-5

    Article  ADS  Google Scholar 

  46. J.F. Ziegler, J.P. Biersack, The stopping and range of ions in matter, in Treatise on heavy-ion science. (Springer, Boston, 1985), pp.93–129

    Chapter  Google Scholar 

  47. J.F. Ziegler, SRIM-2003. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 219, 1027–1036 (2004). https://doi.org/10.1016/j.nimb.2004.01.208

    Article  ADS  Google Scholar 

  48. J. F. Ziegler, J. P. Biersac, U. Littmark, The stopping and range of ions in matter. SRIM (1978. http://www.srim.org

  49. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM–The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 268(11–12), 1818–1823 (2010). https://doi.org/10.1016/j.nimb.2010.02.091

    Article  ADS  Google Scholar 

  50. B. Mukherjee, Mass stopping powers of protons up to 200 MeV in some biologically important materials. Nucl. Instrum. Methods Phys. Res. 211(1), 235–237 (1983). https://doi.org/10.1016/0167-5087(83)90578-1

    Article  ADS  Google Scholar 

  51. A. Bozkurt, Monte Carlo calculation of proton stopping power and ranges in water for therapeutic energies. In EPJ Web Conf. 154, 01007 (2017). https://doi.org/10.1051/epjconf/201715401007

    Article  Google Scholar 

  52. G. Kilic, E. Ilik, S.A.M. Issa, Ghada ALMisned, H.O. Tekin, ZnO/CdO translocation in P2O5-TeO2-ZnO ternary glass systems: a reformative enhancement tool for physical, optical, and heavy-charged particles attenuation properties. Optik 268, 169807 (2022). https://doi.org/10.1016/j.ijleo.2022.169807

    Article  ADS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

GK: methodology, validation, formal analysis, writing–original draft preparation, investigation. EI: methodology, validation, formal analysis, writing–original draft preparation, investigation. SAMI: investigation. GALM: investigation. HOT: formal analysis, writing–original draft preparation, investigation, supervision.

Corresponding authors

Correspondence to G. Kilic or H. O. Tekin.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kilic, G., Ilik, E., Issa, S.A.M. et al. Tailoring critical material properties of some ternary glasses through ZnO/CdO alteration: a focusing study on multiple behavioral changes. Appl. Phys. A 128, 890 (2022). https://doi.org/10.1007/s00339-022-06040-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06040-8

Keywords

Navigation