Skip to main content
Log in

Investigation of Ce2(WO4)3/g-C3N4 nanocomposite for degradation of industrial pollutants through sunlight-driven photocatalysis

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A repertoire of materials has been under development for photocatalytic degradation of the ever-increasing industrial pollutants and Cerium tungstate can be one of them as its band gap lies in the semiconducting region. Despite being sunlight utilizing photocatalytic materials, Ce2(WO4)3 needs improvement on its photocatalytic characteristics which can be achieved by the formation of the carbon-nitride composite. The Ce2(WO4)3/g-C3N4 photocatalyst has been synthesized by a simple hydrothermal method at different weight proportions. The results of XRD and FTIR ascertain the formation of the Ce2(WO4)3/g-C3N4 composite. The surface area of Ce2(WO4)3 was enhanced upon the nanocomposite formation by the support of g-C3N4. For g-C3N4, Ce2(WO4)3 and Ce2(WO4)3/g-C3N4, the dye degradation characteristics were investigated and their kinetics were analyzed. The Ce2(WO4)3/g-C3N4 photocatalyst displayed a degradation of methylene blue by 97.5% and xylenol orange by 85% in 75 min under solar light radiation showing an appreciable improvement in its photocatalytic activity. Further, the rate constant of Ce2(WO4)3/g-C3N4 nanocomposite improves photocatalytic activity quintupled for methylene blue and tripled for xylenol orange compared to pure Ce2(WO4)3. The photocatalytic mechanism illustrates the electron–hole transfer between g-C3N4 and Ce2(WO4)3 in the Ce2(WO4)3/g-C3N4 composite. The enhanced photocatalytic activity was achieved via photo-induced charge carrier generation, reduced recombination rate and large surface area for efficient exchange of electron transfer in Ce2(WO4)3/g-C3N4 composite. The holes, hydroxide and anion radicals played as active species in the photocatalytic degradation of dyes. Furthermore, the photocatalytic degradation efficiency of methylene blue and xylenol orange showed remarkable reusability and stability in subsequent experiments. Thus, Ce2(WO4)3/g-C3N4 nanocomposite can be a preferred choice of materials for the treatment of industrial effluents as a consequence of its high photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. A. Tawfik, M.G. Alalm, H.M. Awad, M. Islam, M.A. Qyyum, A.A.H. Al-Muhtaseb, A.I. Osman, M. Lee, Solar photo-oxidation of recalcitrant industrial wastewater: a review. Environ. Chem. Lett. 20, 1839–1862 (2022)

    Google Scholar 

  2. F. Zhang, X. Wang, H. Liu, C. Liu, Y. Wan, Y. Long, Z. Cai, Recent advances and applications of semiconductor photocatalytic technology. Appl. Sci. 9(12), 2489 (2019)

    Google Scholar 

  3. V.K. Gupta, D. Pathania, P. Singh, A. Kumar, B.S. Rathore, Adsorptional removal of methylene blue by guar gum–cerium (IV) tungstate hybrid cationic exchanger. Carbohyd. Polym. 101, 684–691 (2014)

    Google Scholar 

  4. S.M. AlShehri, J. Ahmed, A.M. Alzahrani, T. Ahamad, Synthesis, characterization, and enhanced photocatalytic properties of NiWO4 nano bricks. New J. Chem. 41, 8178–8186 (2017)

    Google Scholar 

  5. A. Jose, M. John, H. Hitha, S. Kuriakose, K.P. Baiju, T. Varghese, Characterization of Ce2(WO4)3 nanocrystals for potential applications. Results Surf. Interface 4, 100020 (2021)

    Google Scholar 

  6. J. Ke, M. Adnan, M. Younis, Y. Kong, H. Zhou, J. Liu, L. Lei, Y. Hou, Nanostructured ternary metal tungstate-based photocatalysts for environmental purification and solar water splitting: a review. Nano-micro Lett. 10(4), 1–27 (2018)

    ADS  Google Scholar 

  7. R.H.D. Dos Passos, C.P. De Souza, C. Bernard-Nicod, C. Leroux, M. Arab, Structural and electrical properties of cerium tungstate: application to methane conversion. Ceram. Int. 46(6), 8021–8030 (2020)

    Google Scholar 

  8. M. Arab, A.L. Lopes-Moriyama, T.R. Dos Santos, C.P. De Souza, J.R. Gavarri, C. Leroux, Strontium and cerium tungstate materials SrWO4 and Ce2 (WO4)3: methane oxidation and mixed conduction. Catal. Today 208, 35–41 (2013)

    Google Scholar 

  9. P. Roy, A. Pramanik, P. Sarkar, Graphitic carbon nitride sheet supported single-atom metal-free photocatalyst for oxygen reduction reaction: a first-principles analysis. J. Phys. Chem. Lett. 12(11), 2788–2795 (2021)

    Google Scholar 

  10. Y. Hong, E. Liu, J. Shi, X. Lin, L. Sheng, M. Zhang, L. Wang, J. Chen, A direct one-step synthesis of ultrathin g-C3N4 nanosheets from thiourea for boosting solar photocatalytic H2 evolution. Int. J. Hydro. Energy 44(14), 7194–7204 (2019)

    Google Scholar 

  11. C. Wu, S. Xue, Z. Qin, M. Nazari, G. Yang, S. Yue, T. Tong, H. Ghasemi, F.C. Hernandez, S. Xue, D. Zhang, Making g-C3N4 ultra-thin nanosheets active for photocatalytic overall water splitting. Appl. Catal. B Environ. 282, 119557 (2021)

    Google Scholar 

  12. Z. Cai, J. Chen, S. Xing, D. Zheng, L. Guo, Highly fluorescent g-C3N4 nanobelts derived from bulk g-C3N4 for NO2 gas sensing. J. Hazard. Mater. 416, 126195 (2021)

    Google Scholar 

  13. W. Niu, Y. Yang, Graphitic carbon nitride for electrochemical energy conversion and storage. ACS Energy Lett. 3(11), 2796–2815 (2018)

    Google Scholar 

  14. S. Pareek, S. Waheed, A. Rana, P. Sharma, S. Karak, Graphitic carbon nitride quantum dots (g-C3N4) to improve photovoltaic performance of polymer solar cell by combining Förster resonance energy transfer (FRET) and morphological effects. Nano Express 1(1), 010057 (2020)

    ADS  Google Scholar 

  15. R. Ma, S. Zhang, L. Li, P. Gu, T. Wen, A. Khan, S. Li, B. Li, S. Wang, X. Wang, Enhanced visible-light-induced photoactivity of type-II CeO2/g-C3N4 nanosheet toward organic pollutants degradation. ACS Sustain. Chem. Eng. 7(10), 9699–9708 (2019)

    Google Scholar 

  16. S. Sultana, S. Mansingh, Parida, Facile synthesis of CeO2 nanosheets decorated upon BiOI microplate: a surface oxygen vacancy promoted z-scheme-based 2D–2D nanocomposite photocatalyst with enhanced photocatalytic activity. J. Phys. Chem. C 122(1), 808–819 (2018)

    Google Scholar 

  17. K. Sridharan, S. Shenoy, S.G. Kumar, C. Terashima, A. Fujishima, S. Pitchaimuthu, Advanced two-dimensional heterojunction photocatalysts of stoichiometric and non-stoichiometric bismuth oxyhalides with graphitic carbon nitride for sustainable energy and environmental applications. Catalysts 11(4), 426 (2021)

    Google Scholar 

  18. S. Sahoo, A. Behera, S. Mansingh, B. Tripathy, K. Parida, Facile construction of CoWO4 modified g-C3N4 nanocomposites with enhanced photocatalytic activity under visible light irradiation. Mater. Today Proc. 35, 193–197 (2021)

    Google Scholar 

  19. S. Zhan, F. Zhou, N. Huang, Y. Yang, Y. Liu, Y. Yin, Y. Fang, preparation and its enhanced photocatalytic decomposition of phenol in UV. Appl. Surf. Sci. 358, 328–335 (2015)

    ADS  Google Scholar 

  20. H. Che, C. Liu, W. Hu, H. Hu, J. Li, J. Dou, W. Shi, C. Li, H. Dong, NGQD active sites as effective collectors of charge carriers for improving the photocatalytic performance of Z-scheme g-C3N4/Bi2WO6 heterojunctions. Catal. Sci. Technol. 8(2), 622–631 (2018)

    Google Scholar 

  21. R. Gupta, B. Boruah, J.M. Modak, G. Madras, Kinetic study of Z-scheme g-C3N4/CuWO4 photocatalyst towards solar light inactivation of mixed populated bacteria. J. Photochem. Photobiol. A Chem. 372, 121 (2019)

    Google Scholar 

  22. D.P. Ojha, H.P. Karki, J.H. Song, H.J. Kim, Amine-assisted synthesis of FeWO4 nanorod g-C3N4 for enhanced visible-light-driven Z-scheme photocatalysis. Compos. Part B Eng. 160, 277–284 (2019)

    Google Scholar 

  23. A. Maavia, I. Aslam, M. Tanveer, M. Rizwan, M.W. Iqbal, M. Tahir, H. Hussain, R. Boddula, M. Yousuf, Facile synthesis of g-C3N4/CdWO4 with excellent photocatalytic performance for the degradation of Minocycline. Mater. Sci. Energy Technol. 2(2), 258–266 (2019)

    Google Scholar 

  24. J. Wang, Y. Wang, W. Wang, Z. Ding, R. Geng, P. Li, D. Pan, J. Liang, H. Qin, Q. Fan, Tunable mesoporous g-C3N4 nanosheets as a metal-free catalyst for enhanced visible-light-driven photocatalytic reduction of U (VI). Chem. Eng. J. 383, 123193 (2020)

    Google Scholar 

  25. A.M. Kaczmarek, D. Ndagsi, I. Van Driessche, K. Van Hecke, R. Van Deun, Green and blue emitting 3D structured Tb:Ce2(WO4)3 and Tb:Ce10W22O81 micromaterials. Daltn. Trans. 44(22), 10237–10244 (2019)

    Google Scholar 

  26. H. Najafi-Ashtiani, A. Bahari, S. Gholipour, Structural, optical and electrical properties of WO3–Ag nanocomposites for the electro-optical devices. Appl. Phys. A 124, 24 (2018)

    ADS  Google Scholar 

  27. S. Pramanik, S.C. Bhattacharya, Size tunable synthesis and characterization of cerium tungstate nanoparticles via H2O/AOT/heptane microemulsion. Mater. Chem. Phys. 121, 125–130 (2010)

    Google Scholar 

  28. T. Chen, W. Quan, L. Yu, Y. Hong, C. Song, M. Fan, L. Xiao, W. Gu, W. Shi, One-step synthesis and visible-light-driven H2 production from water splitting of Ag quantum dots/ g-C3N4 photocatalysts. J. Alloys Compd. 686, 628–634 (2016)

    Google Scholar 

  29. J. Vinoth Kumar, R. Karthik, S.M. Chen, P. Balasubramanian, V. Muthuraj, V. Selvam, Electroanalysis 29(10), 2385–2394 (2017)

    Google Scholar 

  30. S. Abbasi, D. Dastan, S. Talu, M.B. Tahir, M. Elias, L. Tao, Z. Li, Evaluation of the dependence of methyl orange organic pollutant removal rate on the amount of titanium dioxide nanoparticles in MWCNTs-TiO2 photocatalyst using statistical methods and Duncan’s multiple range test. Int. J. Environ. Anal. Chem. (2022). https://doi.org/10.1080/03067319.2022.2060085

    Article  Google Scholar 

  31. C. Li, X. Wu, J. Shan, J. Liu, X. Huang, Preparation, characterization of graphitic carbon nitride photo-catalytic nanocomposites and their application in wastewater remediation: a review. Crystals 11(7), 723 (2021)

    Google Scholar 

  32. S.L. Prabavathi, K. Saravanakumar, T.T.I. Nkambule, V. Muthuraj, G. Mamba, Enhanced photoactivity of cerium tungstate-modified graphitic carbon nitride heterojunction photocatalyst for the photodegradation of moxifloxacin. J. Mater. Sci. Mater. Electron 31, 11434–11447 (2020)

    Google Scholar 

  33. S. Panimalar, R. Uthrakumar, E.T. Selvi, P. Gomathy, C. Inmozhi, K. Kaviyarasu, J. Kennedy, Studies of MnO2/g-C3N4 heterostructure efficient of visible light photocatalyst for pollutants degradation by sol-gel technique. Surf. Interfaces 20, 100512 (2020)

    Google Scholar 

  34. Q. Wei, S. Xiong, W. Li, C. Jin, Y. Chen, L. Hou, Z. Wu, Z. Pan, Q. He, Y. Wang, D. Tang, Double Z-scheme system of α-SnWO4/UiO-66 (NH2)/g-C3N4ternary heterojunction with enhanced photocatalytic performance for ibuprofen degradation and H2 evolution. J. Alloys Compd. 885, 160984 (2021)

    Google Scholar 

  35. S.L. Prabavathi, K. Saravanakumar, C.M. Park, V. Muthuraj, Photocatalytic degradation of levofloxacin by a novel Sm6WO12/g-C3N4 heterojunction: performance, mechanism and degradation pathways. Sep. Purif. Technol. 257, 117985 (2021)

    Google Scholar 

  36. Y. Bai, W. Mao, Y. Wu, Y. Gao, T. Wang, S. Liu, Synthesis of novel ternary heterojunctions via Bi2WO6 coupling with CuS and g-C3N4 for the highly efficient visible-light photodegradation of ciprofloxacin in wastewater. Colloid Surf. A Physicochem. Eng. Asp. 610, 125 (2021)

    Google Scholar 

  37. K. Saravanakumar, G. Mamba, V. Muthuraj, 1D/2D MnWO4 nanorods anchored on g-C3N4nanosheets for enhanced photocatalytic degradation of ofloxacin under visible light irradiation. Colloid Surf. A Physicochem. Eng. Asp. 581, 123845 (2019)

    Google Scholar 

  38. Y. Liao, C. Zou, H. Peng, S. Lin, W. Chen, Y. Cao, B. Li, A novel g-C3N4/BiOI/Ag2WO4 heterojunction for efficient degradation of organic pollutants under visible light irradiation. Ceram. Int. 47, 26248–26259 (2021)

    Google Scholar 

  39. K. Saravanakumar, R. Karthik, S.M. Chen, J.V. Kumar, K. Prakash, V. Muthuraj, Construction of novel Pd/CeO2/g-C3N4 nanocomposites as efficient visible-light photocatalysts for hexavalent chromium detoxification. J. Colloid Interface Sci. 504, 514–526 (2021)

    ADS  Google Scholar 

  40. M. Mousavi, A. Habibi-Yangjeh, Magnetically recoverable highly efficient visible-light-active g-C3N4/Fe3O4/Ag2WO4/AgBr nanocomposites for photocatalytic degradations of environmental pollutants. Adv. Powd. Technol. 29(1), 94–105 (2018)

    Google Scholar 

  41. D. Dastan, N.B. Chaure, Influence of surfactants on TiO2 nanoparticles grown by sol-gel technique. J. Mater. Mech. Manuf. 2(1), 21–24 (2014)

    Google Scholar 

  42. C. Wang, M. Fu, J. Cao, X. Wu, X. Hu, F. Dong, BaWO4/g-C3N4 heterostructure with excellent bifunctional photocatalytic performance. Chem. Eng. J. 385, 123833 (2021)

    Google Scholar 

  43. R. Karthiga, B. Kavitha, M. Rajarajan, A. Suganthi, Photocatalytic and antimicrobial activity of NiWO4 nanoparticles stabilized by the plant extract. Mater. Sci. Semicond. Proc. 40, 123–129 (2015)

    Google Scholar 

  44. S.L. Prabavathi, K. Saravanakumar, T.T.I. Nkambule, V. Muthuraj, G. Mamba, Photocatalytic degradation of levofloxacin by a novel Sm6WO12/ g-C3N4 heterojunction: performance, mechanism and degradation pathways. J. Mater. Sci. Mater. Electron 31, 11434–11447 (2020)

    Google Scholar 

  45. D. Rattan Paul, S.P. Nehra, Graphitic carbon nitride: a sustainable photocatalyst for organic pollutant degradation and antibacterial applications. Environ. Sci. Pollut. Res. 28, 3888–3896 (2021)

    Google Scholar 

  46. M. Li, L. Zhang, M. Wu, Y. Du, X. Fan, M. Wang, L. Zhang, Q. Kong, J. Shi, Mesostructured CeO2/g-C3N4 nanocomposites: remarkably enhanced photocatalytic activity for CO2 reduction by mutual component activations. Nano Energy 19, 145–155 (2016)

    Google Scholar 

  47. D. Dastan, Effect of preparation methods on the properties of titania nanoparticles: solvothermal versus sol–gel. Appl. Phys. A 123, 1–13 (2017)

    ADS  Google Scholar 

  48. S.A.A. Terohid, S. Heidari, A. Jafari, S. Asgary, Effect of growth time on structural, morphological and electrical properties of tungsten oxide nanowire. Appl. Phys. A 124(8), 1–9 (2018)

    Google Scholar 

  49. M. Mousavi, A. Habibi-Yangjeh, S.R. Pouran, Review on magnetically separable graphitic carbon nitride-based nanocomposites as promising visible-light-driven photocatalysts. J. Mater. Sci. Mater. Electron 29(3), 1719–1747 (2018)

    Google Scholar 

  50. Z. Talebzadeh, M. Masjedi-Arani, O. Amiri, M. Salavati-Niasari, La2Sn2O7/g-C3N4 nanocomposites: rapid and green sonochemical fabrication and photo-degradation performance for removal of dye contaminations. Ultra Sonochem. 77, 105678 (2021)

    Google Scholar 

  51. V. Hasija, P. Raizada, A. Sudhaik, K. Sharma, A. Kumar, P. Singh, S.B. Jonnalagadda, V.K. Thakur, Recent advances in noble metal-free doped graphitic carbon nitride-based nanohybrids for photocatalysis of organic contaminants in water: a review. Appl. Mater. Today 15, 494–524 (2019)

    Google Scholar 

  52. S. Prabhavathy, D. Arivuoli, Enhanced photocatalytic activity on Vanadium-doped NiO nanostructures in natural sunlight. J. Mater. Sci. Mater. Electron 32(1), 1105–1120 (2021)

    Google Scholar 

  53. A. Durairaj, T. Sakthivel, S. Ramanathan, S. Vasanthkumar, Quenching-induced structural distortion of graphitic carbon nitride nanostructures: enhanced photocatalytic activity and electrochemical hydrogen production. ACS Omega 4(4), 6476–6485 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

GA contributed to the design of the project, material preparation, data collection, investigation, writing—original draft, writing—review and editing. DA contributed to conceptualization, supervision, resources, manuscript revision and editing. All authors contributed to the discussion and writing manuscript.

Corresponding author

Correspondence to D. Arivuoli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent to participate

All the authors consent to participate and submit this manuscript to the Journal of Applied Physics A.

Consent to publication

All the author’s consent for publication of this paper in the Journal of Applied Physics A.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahilandeswari, G., Arivuoli, D. Investigation of Ce2(WO4)3/g-C3N4 nanocomposite for degradation of industrial pollutants through sunlight-driven photocatalysis. Appl. Phys. A 128, 705 (2022). https://doi.org/10.1007/s00339-022-05846-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05846-w

Keywords

Navigation