Skip to main content
Log in

Effect of heavy rare-earth element oxides on physical, optical and gamma-ray protection abilities of zinc-borate glasses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, the optical, physical, and gamma-ray shielding abilities of some heavy rare-earth element oxides (HREOs: Dy2O3, Er2O3, and Yb2O3) doped zinc-borate glasses were investigated. Despite a relatively small increase in synthesized glasses’ densities from 3.65995 g cm− 3 to 3.78644 g cm− 3, the effect of HREOs on the glasses’ molar volume values caused the structure to be more stable and uniform. Optical band values (from 3.00 to 3.16 eV) and Urbach energies (from 0.450 to 0.570 eV) were calculated by examining the transmittance and absorbance values for heavy rare-earth element oxides doped zinc-borate glasses which give very different optical properties to the glass structure. Absorbed regions at different wavelengths were determined in Dy2O3-, Er2O3- and Yb2O3-doped glasses. Moreover, radiation shielding parameters such as mass attenuation coefficient, half value layer and effective atomic number of glasses whose physical properties were determined were calculated using XCOM database between the range of 0.01 MeV and 10 MeV. It has been determined that Yb2O3-doped glasses show superior properties compared to other HREOs doped zinc-borate glass samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D.D. Ramteke, R.S. Gedam, Study of Li2O–B2O3–Dy2O3 glasses by impedance spectroscopy. Solid State Ionics 258, 82–87 (2014). https://doi.org/10.1016/j.ssi.2014.02.006

    Article  Google Scholar 

  2. S. Ozturk, E. Ilik, G. Kilic, U.G. Issever, Ta2O5-doped zinc-borate glasses: physical, structural, optical, thermal, and radiation shielding properties. Appl. Phys. A 126(844), 1–16 (2020). https://doi.org/10.1007/s00339-020-04041-z

    Article  Google Scholar 

  3. G. Kilic, S.A. Issa, E. Ilik, O. Kilicoglu, H.O. Tekin, A journey for exploration of Eu2O3 reinforcement effect on zinc-borate glasses: synthesis, optical, physical and nuclear radiation shielding properties. Ceram. Int. 47(2), 2572–2583 (2021). https://doi.org/10.1016/j.ceramint.2020.09.103

    Article  Google Scholar 

  4. Y. Zhao, Y. Zhong, H. Chang, W. Liu, Z. Xiao, Y. Zhong, J. Song, L. Zhang, L. Han, W. You, Luminescent properties of Tm3+-Dy3+ co-doped P2O5-SrO-BaO-B2O3-ZnO glasses for white LED applications. J. Non-Cryst. Solids 573, 121121 (2021). https://doi.org/10.1016/j.jnoncrysol.2021.121121

    Article  Google Scholar 

  5. S.G. Motke, S.P. Yawale, S.S. Yawale, Infrared spectra of zinc doped lead borate glasses. Bull. Mater. Sci. 25(1), 75–78 (2002). https://doi.org/10.1007/BF02704599

    Article  Google Scholar 

  6. S. Kaewjaeng, N. Wantana, S. Kothan, R. Rajaramakrishna, H.J. Kim, P. Limsuwan, J. Kaewkhao, Effect of Gd2O3 on the radiation shielding, physical, optical and luminescence behaviors of Gd2O3–La2O3–ZnO–B2O3–Dy2O3 glasses. Radiat. Phys. Chem. 185, 109500 (2021). https://doi.org/10.1016/j.radphyschem.2021.109500

    Article  Google Scholar 

  7. M.H.A. Mhareb, S. Hashim, S.K. Ghoshal, Y.S.M. Alajerami, M.J. Bqoor, A.I. Hamdan, M.A. Salem, M.A. Karim, Effect of Dy2O3 impurities on the physical, optical and thermoluminescence properties of lithium borate glass. J. Lumin. 177, 366–372 (2016). https://doi.org/10.1016/j.jlumin.2016.05.002

    Article  Google Scholar 

  8. A.D. Sontakke, A. Tarafder, K. Biswas, K. Annapurna, Sensitized red luminescence from Bi3+ co-doped Eu3+: ZnO–B2O3 glasses. Physica B 404(20), 3525–3529 (2009). https://doi.org/10.1016/j.physb.2009.05.053

    Article  ADS  Google Scholar 

  9. V.D. Risovany, E.E. Varlashova, D.N. Suslov, Dysprosium titanate as an absorber material for control rods. J. Nucl. Mater. 281(1), 84–89 (2000). https://doi.org/10.1016/S0022-3115(00)00129-X

    Article  ADS  Google Scholar 

  10. K.A. Naseer, G. Sathiyapriya, K. Marimuthu, T. Piotrowski, M.S. Alqahtani, Optical, elastic, and neutron shielding studies of Nb2O5 varied Dy3+ doped barium-borate glasses. Optik 251, 168436 (2022). https://doi.org/10.1016/j.ijleo.2021.168436

    Article  ADS  Google Scholar 

  11. M.U. Khandaker, H. Haba, Y. Komori, N. Otuka, Excitation functions of deuteron-induced nuclear reactions on erbium in the energy range of 4–24 MeV. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 470, 1–9 (2020). https://doi.org/10.1016/j.nimb.2020.02.035

    Article  ADS  Google Scholar 

  12. J. Kaewkhao, P. Limsuwan, Utilization of rice husk fly ash in the color glass production. Proced Eng 32, 670–675 (2012). https://doi.org/10.1016/j.proeng.2012.01.1325

    Article  Google Scholar 

  13. K.A. Naseer, S. Arunkumar, K. Marimuthu, The impact of Er3+ ions on the spectroscopic scrutiny of bismuth bariumtelluroborate glasses for display devices and 1.53 μm amplification. J Non-Cryst Solids 520, 119463 (2019). https://doi.org/10.1016/j.jnoncrysol.2019.119463

    Article  Google Scholar 

  14. G. Kilic, E. Ilik, S.A. Issa, B. Issa, M.S. Al-Buriahi, U.G. Issever, H.M.H. Zakaly, H.O. Tekin, Ytterbium (III) oxide reinforced novel TeO2–B2O3–V2O5 glass system: synthesis and optical, structural, physical and thermal properties. Ceram. Int. 47(13), 18517–18531 (2021). https://doi.org/10.1016/j.ceramint.2021.03.175

    Article  Google Scholar 

  15. D. Ehrt, Fluoroaluminate glasses for lasers and amplifiers. Curr. Opin. Solid State Mater. Sci. 7(2), 135–141 (2003). https://doi.org/10.1016/S1359-0286(03)00049-4

    Article  ADS  Google Scholar 

  16. K.A. Naseer, K. Marimuthu, The impact of Er/Yb co-doping on the spectroscopic performance of bismuth borophosphate glasses for photonic applications. Vacuum 183, 109788 (2021). https://doi.org/10.1016/j.vacuum.2020.109788

    Article  ADS  Google Scholar 

  17. A.H. Almuqrin, J.F.M. Jecong, F.C. Hila, C.V. Balderas, M.I. Sayyed, Radiation shielding properties of selected alloys using EPICS2017 data library. Prog. Nucl. Energy 137, 103748 (2021). https://doi.org/10.1016/j.pnucene.2021.103748

    Article  Google Scholar 

  18. S. Arivazhagan, K.A. Naseer, K.A. Mahmoud, K.A. Kumar, N.K. Libeesh, M.I. Sayyed, M.S. Alqahtani, E.S. Yousef, M.U. Khandaker, Gamma-ray protection capacity evaluation and satellite data based mapping for the limestone, charnockite, and gneiss rocks in the Sirugudi taluk of the Dindigul district. India. Radiat. Phys. Chem. (2022). https://doi.org/10.1016/j.radphyschem.2022.110108

    Article  Google Scholar 

  19. B. Tellili, Y. Elmahroug, C. Souga, Investigation on radiation shielding parameters of cerrobend alloys. Nucl. Eng. Technol. 49(8), 1758–1771 (2017). https://doi.org/10.1016/j.net.2017.08.020

    Article  Google Scholar 

  20. N.K. Libeesh, K.A. Naseer, K.A. Mahmoud, M.I. Sayyed, S. Arivazhagan, M.S. Alqahtani, M.U. Khandaker, Applicability of the multispectral remote sensing on determining the natural rock complexes distribution and their evaluability on the radiation protection applications. Radiat. Phys. Chem. 193, 110004 (2022). https://doi.org/10.1016/j.radphyschem.2022.110004

    Article  Google Scholar 

  21. E.A. Abdel Wahab, K.S. Shaaban, R. Elsaman, E.S. Yousef, Radiation shielding and physical properties of lead borate glass-doped ZrO2 nanoparticles. Appl. Phys. A 125(12), 1–15 (2019). https://doi.org/10.1007/s00339-019-3166-8

    Article  ADS  Google Scholar 

  22. N.K. Libeesh, K.A. Naseer, S. Arivazhagan, K.A. Mahmoud, M.I. Sayyed, M.S. Alqahtani, Multispectral remote sensing for determination the Ultra-mafic complexes distribution and their applications in reducing the equivalent dose from the radioactive wastes. Eur. Phys. J. Plus 137(2), 267 (2022). https://doi.org/10.1140/epjp/s13360-022-02473-5

    Article  Google Scholar 

  23. M.I. Sayyed, N. Dwaikat, M.H.A. Mhareb, A.N. D’Souza, N. Almousa, Y.S.M. Alajerami, F. Almasoud, K.A. Naseer, S.D. Kamath, M.U. Khandaker, H. Osman, S. Alamri, Effect of TeO2 addition on the gamma radiation shielding competence and mechanical properties of boro-tellurite glass: an experimental approach. J. Mater. Res. Technol. 18, 1017–1027 (2022). https://doi.org/10.1016/j.jmrt.2022.02.130

    Article  Google Scholar 

  24. P.E. Teresa, K.A. Naseer, K. Marimuthu, H. Alavian, M.I. Sayyed, Influence of modifiers on the physical, structural, elastic and radiation shielding competence of Dy3+ ions doped alkali boro-tellurite glasses. Radiat. Phys. Chem. 189, 109741 (2021). https://doi.org/10.1016/j.radphyschem.2021.109741

    Article  Google Scholar 

  25. National Institute of Standards and Technology, (Accession date: March 19, 2022) https://www.physics.nist.gov/PhysRefData/Xcom/html/xcom1.html

  26. G. Kilic, U.G. Issever, E. Ilik, Characterization of Er3+ doped ZnTeTa semiconducting oxide glass. J. Mater. Sci. Mater. Electron. 30(9), 8920–8930 (2019). https://doi.org/10.1007/s10854-019-01220-4

    Article  Google Scholar 

  27. B. Eraiah, Experimental and theoretical approach on the physical, structural and optical properties of ZrO2-Na2O-B2O3 glasses doped with Dy2O3. J. Non-Cryst. Solids 551, 120394 (2021). https://doi.org/10.1016/j.jnoncrysol.2020.120394

    Article  Google Scholar 

  28. A.L. Martins Jr., C.A.C. Feitosa, W.Q. Santos, C. Jacinto, C.C. Santos, Influence of BaX2 (X= Cl, F) and Er2O3 concentration on the physical and optical properties of barium borate glasses. Physica B 558, 146–153 (2019). https://doi.org/10.1016/j.physb.2019.01.038

    Article  ADS  Google Scholar 

  29. M.C. Paul, S. Bysakh, S. Das, S.K. Bhadra, M. Pal, S. Yoo, M.P. Kalita, A.J. Boyland, J.K. Sahu, Yb2O3-doped YAG nano-crystallites in silica-based core glass matrix of optical fiber preform. Mater. Sci. Eng. B 175(2), 108–119 (2010). https://doi.org/10.1016/j.mseb.2010.07.013

    Article  Google Scholar 

  30. H. Tiantian, X.Y. Sun, J. Yu, Y. Gu, L. Xia, Z.X. Wen, H. Guo, X. Ye, Optical properties of Dy2O3, Tb4O7 singly doped, Dy2O3/Tb4O7codoped borogermanate-tellurite glasses for radiation application. J. Lumin. 244, 118737 (2022). https://doi.org/10.1016/j.jlumin.2022.118737

    Article  Google Scholar 

  31. V.R. Kumar, A. Ashirvadam, P. Naresh, G.N. Raju, M.R. Rao, B.N.K. Reddy, G.S. Baskaran, Spectroscopic properties of P2O5–MgO–Na2O: Dy2O3 glasses for the applications of W-LEDs. Opt. Mater. 121, 111590 (2021). https://doi.org/10.1016/j.optmat.2021.111590

    Article  Google Scholar 

  32. Z.A.S. Mahraz, M.R. Sahar, S.K. Ghoshal, Influence of Er3+ dopants on optical properties of boro-tellurite glass. Adv. Mater. Res. 895, 211–215 (2014). https://doi.org/10.4028/www.scientific.net/AMR.895.211

    Article  Google Scholar 

  33. N. Elkhoshkhany, S.Y. Marzouk, N. Moataz, S.H. Kandil, Structural and optical properties of TeO2-Li2O-ZnO-Nb2O5-Er2O3 glass system. J. Non-Cryst. Solids 500, 289–301 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.08.011

    Article  ADS  Google Scholar 

  34. N.S. Prabhu, H.M. Somashekarappa, M.I. Sayyed, H. Osman, S. Alamri, M.U. Khandaker, S.D. Kamath, Structural and optical modifications in the BaO-ZnO-LiF-B2O3-Yb2O3 glass system after γ-irradiation. Materials 14(22), 6955 (2021). https://doi.org/10.3390/ma14226955

    Article  ADS  Google Scholar 

  35. K. VenkataKrishnaiah, C.K. Jayasankar, V. Venkatramu, S.F. Leόn-Luis, V. Lavín, S. Chaurasia, L.J. Dhareshwar, Optical properties of Yb3+ ions in fluorophosphate glasses for 1.0 μm solid-state infrared lasers. Appl. Phys. B 113(4), 527–535 (2013). https://doi.org/10.1007/s00340-013-5502-6

    Article  ADS  Google Scholar 

  36. E. Ilik, G. Kilic, U.G. Issever, Synthesis of novel AgO-doped vanadium–borophosphate semiconducting glasses and investigation of their optical, structural, and thermal properties. J. Mater. Sci. Mater. Electron. 31(11), 8986–8995 (2020). https://doi.org/10.1007/s10854-020-03432-5

    Article  Google Scholar 

  37. G. Kilic, Role of Nd3+ ions in TeO2–V2O5–(B2O3/Nd2O3) glasses: structural, optical, and thermal characterization. J. Mater. Sci. Mater. Electron. 31(15), 12892–12902 (2020). https://doi.org/10.1007/s10854-020-03842-5

    Article  Google Scholar 

  38. G. Kilic, Synthesis and optical, thermal, structural investigation of zinc-borate glasses containing V2O5. Adıyaman Univ. J. Sci. 10(1), 307–325 (2020). https://doi.org/10.37094/adyujsci.678938

    Article  Google Scholar 

  39. H. Gülbiçim, M.Ç. Tufan, M.N. Türkan, The investigation of vermiculite as an alternating shielding material for gamma rays. Radiat. Phys. Chem. 130, 112–117 (2017). https://doi.org/10.1016/j.radphyschem.2016.07.025

    Article  ADS  Google Scholar 

  40. N. Chanthima, J. Kaewkhao, Investigation on radiation shielding parameters of bismuth borosilicate glass from 1 keV to 100 GeV. Ann. Nucl. Energy 55, 23–28 (2013). https://doi.org/10.1016/j.anucene.2012.12.011

    Article  Google Scholar 

  41. K.S. Krane, Detecting nuclear radiations, in Introductory nuclear physics. ed. by S. KraneKenneth (John Wiley & Sons, Hoboken, 1987)

    Google Scholar 

  42. G.F. Knoll, Radiation detection and measurement (John Wiley & Sons, Hoboken, 2010)

    Google Scholar 

  43. H.O. Tekin, S.A. Issa, E. Kavaz, E.A. Guclu, The direct effect of Er2O3 on bismuth barium telluro borate glasses for nuclear security applications. Mater. Res. Express 6(11), 115212 (2019). https://doi.org/10.1088/2053-1591/ab4cb5

    Article  ADS  Google Scholar 

  44. A.H. Almuqrin, M.I. Sayyed, Gamma ray shielding properties of Yb3+-doped calcium borotellurite glasses. Appl. Sci. 11(12), 5697 (2021). https://doi.org/10.3390/app11125697

    Article  Google Scholar 

  45. K. Mariselvam, Physical, optical and radiation shielding features of Yb3+ ions doped H3BO3-Bi2O3-BaCO3-CaF2-ZnO glasses. Optik 230, 166319 (2021). https://doi.org/10.1016/j.ijleo.2021.166319

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erkan Ilik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilik, E. Effect of heavy rare-earth element oxides on physical, optical and gamma-ray protection abilities of zinc-borate glasses. Appl. Phys. A 128, 496 (2022). https://doi.org/10.1007/s00339-022-05642-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05642-6

Keywords

Navigation