Skip to main content

Advertisement

Log in

An investigation of copper oxide-loaded reduced graphene oxide nanocomposite for energy storage applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This study presents the fabrication process and investigation of copper oxide-loaded reduced graphene oxide (rGO/CuO) nanocomposite for energy storage applications. In the study, the surface morphology, elemental mapping, structural analysis, chemical features, thermal stability and electrical conductivity of rGO/CuO nanocomposite were analyzed by scanning electron microscope and transmission electron microscope (SEM, TEM), X-ray diffraction analyzer (XRD), Fourier transform infrared (FTIR) spectrophotometer, thermogravimetric analyzer (TGA) and electrical conductivity measuring device (ECMD). The sonicated reduced graphene oxide was dispersed in copper acetate in the presence of ascorbic acid. The fabricated rGO/CuO nanocomposite showed a total weight loss of about 34.83% at 416.96 °C. More so, the formation of copper oxide is evident on the nanocomposite at the diffraction peaks of \(2\uptheta \) = 36.75° and 61.41°. The homogenous mixture of the nanocomposite showed an average roughness of 8.62 nm and an electrical conductivity of 204.10 S/m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

On request.

References

  1. K. Davami, M. Shaygan, I. Bargatin, Fabrication of vertical graphene-based nanocomposite thin films. J. Mater. Res. 30(5), 617–625 (2015)

    ADS  Google Scholar 

  2. D.A. Brownson, D.K. Kampouris, C.E. Banks, An overview of graphene in energy production and storage applications. J. Power Sources 196(11), 4873–4885 (2011)

    ADS  Google Scholar 

  3. R. Raccichini, A. Varzi, S. Passerini, B. Scrosati, The role of graphene for electrochemical energy storage. Nat. Mater. 14(3), 271–279 (2015)

    ADS  Google Scholar 

  4. O. Folorunso, Y. Hamam, R. Sadiku, S.S. Ray, G.J. Adekoya, Statistical characterization and simulation of graphene-loaded polypyrrole composite electrical conductivity. J. Mater. Res. Tech. 9(6), 15788–15801 (2020)

    Google Scholar 

  5. B. Liu, N. Vu-Bac, X. Zhuang, T. Rabczuk, Stochastic multiscale modeling of heat conductivity of Polymeric clay nanocomposites. Mech. Mater. 142, 103280 (2020)

    Google Scholar 

  6. L. Bai, Y. Zhang, W. Tong, L. Sun, H. Huang, Q. An et al., Graphene for energy storage and conversion: synthesis and interdisciplinary applications. Electrochem. Energy Rev. 3(2), 395–430 (2020)

    Google Scholar 

  7. N. Kumar, R. Salehiyan, V. Chauke, O.J. Botlhoko, K. Setshedi, M. Scriba et al., Top-down synthesis of grapheme: a comprehensive review. FlatChem (2021). https://doi.org/10.1016/j.flatc.2021.100224

    Article  Google Scholar 

  8. A.G. Olabi, M.A. Abdelkareem, T. Wilberforce, S.E. Sayed, Reviews, “Application of graphene in energy storage device–A review,.” Renew. Sustain. Energy Rev. 135, 110026 (2021)

    Google Scholar 

  9. O. Folorunso, N. Kumar, Y. Hamam, R. Sadiku, S.S. Ray, Recent progress on 2D metal carbide/nitride (MXene) nanocomposites for lithium-based batteries. FlatChem (2021). https://doi.org/10.1016/j.flatc.2021.100281

    Article  Google Scholar 

  10. K. Ganesan, V.K. Jothi, A. Natarajan, A. Rajaram, S. Ravichandran, S. Ramalingam, Green synthesis of copper oxide nanoparticles decorated with graphene oxide for anticancer activity and catalytic applications. Arab. J. Chem. 13(8), 6802–6814 (2020)

    Google Scholar 

  11. H. Zhang, P. Xu, Y. Ni, H. Geng, G. Zheng, B. Dong et al., In situ chemical synthesis of SnO2/reduced graphene oxide nanocomposites as anode materials for lithium-ion batteries. J. Mater. Res. 29(5), 617–624 (2014)

    ADS  Google Scholar 

  12. L. Zhang, W. Cai, J. Ren, Y. Tang, Cu-Co bimetal oxide hierarchical nanostructures as high-performance electrocatalyst for oxygen evolution reaction. Mater. Today Energy. 21, 100703 (2021)

    Google Scholar 

  13. K.-J. Ko, S.-R. Shin, H. Lee, E. Jeong, Y. Yoo, H. Kim et al., Fabrication of an oxide/metal/oxide structured electrode integrated with antireflective film to enhance performance in flexible organic light-emitting diodes. Mater. Today Energy.20, 100704 (2021)

    Google Scholar 

  14. M.K. Ramos, A.J. Zarbin, Graphene/copper oxide nanoparticles thin films as precursor for graphene/copper hexacyanoferrate nanocomposites. Appl. Surf. Sci. 515, 146000 (2020)

    Google Scholar 

  15. Y. Zhao, X. Song, Q. Song, Z. Yin, A facile route to the synthesis copper oxide/reduced graphene oxide nanocomposites and electrochemical detection of catechol organic pollutant. CrystEngComm. 14(20), 6710–6719 (2012)

    Google Scholar 

  16. D. Ni’maturrohmah, D. Maharani, O. Ruzicka, U. Gitasari, E. Adhitama, T. Saraswati, Copper-graphene composite: electrochemical synthesis and structural characterization. IOP Conf. Series Mater. Sci. Eng. 333(1), 012002 (2018)

    Google Scholar 

  17. H.-C. Yu, K.-Z. Fung, Role of Sr addition on the structure stability and electrical conductivity of Sr-doped lanthanum copper oxide perovskites. J. Mater. Res. 19(3), 943–949 (2004)

    ADS  Google Scholar 

  18. R. Jiang, X. Zhou, Q. Fang, Z. Liu, Copper–graphene bulk composites with homogeneous graphene dispersion and enhanced mechanical properties. Mater. Sci. Eng: A 654, 124–130 (2016)

    Google Scholar 

  19. V. Konakov, O.Y. Kurapova, E. Solovyeva, I. Lomakin, I.Y. Archakov, Synthesis, structure and mechanical properties of bulk “copper-graphene” composites. Rev. Adv. Mater. Sci. 57(2), 151–157 (2018)

    Google Scholar 

  20. X. Wang, J. Li, Y. Wang, Improved high temperature strength of copper-graphene composite material. Mater. Lett. 181, 309–312 (2016)

    Google Scholar 

  21. W. Li, D. Li, Q. Fu, C. Pan, Conductive enhancement of copper/graphene composites based on high-quality graphene. RSC Adv. 5(98), 80428–80433 (2015)

    ADS  Google Scholar 

  22. Y. Foong, A. Koh, S. Lim, D. Chua, H. Ng, Properties of laser fabricated nanostructured Cu/diamond-like carbon composite. J. Mater. Res. 26(21), 2761–2771 (2011)

    ADS  Google Scholar 

  23. K. Chu, X.-H. Wang, F. Wang, Y.-B. Li, D.-J. Huang, H. Liu et al., Largely enhanced thermal conductivity of graphene/copper composites with highly aligned graphene network. Carbon 127, 102–112 (2018)

    Google Scholar 

  24. Y. Dappe, M.A. Basanta, F. Flores, J. Ortega, Weak chemical interaction and van der Waals forces between graphene layers: a combined density functional and intermolecular perturbation theory approach. Phys. Rev. B 74(20), 205434 (2006)

    ADS  Google Scholar 

  25. J. Hwang, T. Yoon, S.H. Jin, J. Lee, T.S. Kim, S.H. Hong et al., Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Adv. Mater. 25(46), 6724–6729 (2013)

    Google Scholar 

  26. F. Chen, J. Ying, Y. Wang, S. Du, Z. Liu, Q. Huang, Effects of graphene content on the microstructure and properties of copper matrix composites. Carbon 96, 836–842 (2016)

    Google Scholar 

  27. C.L. Pavithra, B.V. Sarada, K.V. Rajulapati, T.N. Rao, G. Sundararajan, A new electrochemical approach for the synthesis of copper-graphene nanocomposite foils with high hardness. Sci. Rep. 4(1), 1–7 (2014)

    Google Scholar 

  28. S. Rai, R. Bhujel, J. Biswas, B.P. Swain, Effect of electrolyte on the supercapacitive behaviour of copper oxide/reduced graphene oxide nanocomposite. Ceram. Int. 45(11), 14136–14145 (2019)

    Google Scholar 

  29. A. Gupta, R. Jamatia, R.A. Patil, Y.-R. Ma, A.K. Pal, Copper oxide/reduced graphene oxide nanocomposite-catalyzed synthesis of flavanones and flavanones with triazole hybrid molecules in one pot: a green and sustainable approach. ACS Omega 3(7), 7288–7299 (2018)

    Google Scholar 

  30. C. Sarkar, S.K. Dolui, Synthesis of copper oxide/reduced graphene oxide nanocomposite and its enhanced catalytic activity towards reduction of 4-nitrophenol. RSC Adv. 5(75), 60763–60769 (2015)

    ADS  Google Scholar 

  31. F. Ahmadi, S. Ghasemi, Electrophoretic deposition of copper–copper hydroxide/graphene oxide nanocomposite for supercapacitor. J. Mater. Sci.: Mater. Electron. 29(11), 9067–9076 (2018)

    Google Scholar 

  32. S.T. Seyyedin, M.R. Sovizi, M.R. Yaftian, Enhancing lithium–sulphur battery performance by copper oxide@ graphene oxide nanocomposite-modified cathode. Chem. Pap. 70(12), 1590–1599 (2016)

    Google Scholar 

  33. B. Liu, N. Vu-Bac, T. Rabczuk, A stochastic multiscale method for the prediction of the thermal conductivity of Polymer nanocomposites through hybrid machine learning algorithms. Compos. Struct. 273, 114269 (2021)

    Google Scholar 

  34. K.M. Hamdia, T. Lahmer, T. Nguyen-Thoi, T. Rabczuk, Predicting the fracture toughness of PNCs: a stochastic approach based on ANN and ANFIS. Comput. Mater. Sci. 102, 304–313 (2015)

    Google Scholar 

  35. Y.K. Bek, K. Hamdia, T. Rabczuk, C. Könke, Micromechanical model for polymeric nano-composites material based on SBFEM. Compos. Struct. 194, 516–526 (2018)

    Google Scholar 

  36. S. Lim, N. Huang, H. Lim, Solvothermal synthesis of SnO2/graphene nanocomposites for supercapacitor application. Ceram. Int. 39(6), 6647–6655 (2013)

    Google Scholar 

  37. Y. Liu, G. Yuan, Z. Jiang, Z. Yao, Solvothermal synthesis of Mn3O4 nanoparticle/graphene sheet composites and their supercapacitive properties. J. Nanomater 2014, 1–11 (2014)

    ADS  Google Scholar 

  38. A. Nisar, M. Saeed, M. Muneer, M. Usman, I. Khan, Synthesis and characterization of ZnO decorated reduced graphene oxide (ZnO-rGO) and evaluation of its photocatalytic activity toward photodegradation of methylene blue. Environ. Sci. Pollut. Res. (2021). https://doi.org/10.1007/s11356-021-13520-6

    Article  Google Scholar 

  39. Y. Sudhakar, H. Hemant, S. Nitinkumar, P. Poornesh, M. Selvakumar, Green synthesis and electrochemical characterization of rGO–CuO nanocomposites for supercapacitor applications. Ionics 5(23), 1267–1276 (2016)

    Google Scholar 

  40. D. Nečas, P. Klapetek, Gwyddion: an open-source software for SPM data analysis. Open Phys. 10(1), 181–188 (2012)

    ADS  Google Scholar 

  41. I.A. Ramphal, M.E. Hagerman, Nanoscale morphology, tribology and electrical properties of polyaniline/graphene oxide/LAPONITE® composites investigated using atomic force microscopy. Nanoscale. 11(43), 20876–20883 (2019)

    Google Scholar 

  42. M. Sohn, D. Kim, S. Kim, N. Paik, S. Gupta, Super-smooth indium–tin oxide thin films by negative sputter ion beam technology. J. Vacuum Sci. Tech. A: Vacuum, Surf., Films 21(4), 1347–1350 (2003)

    ADS  Google Scholar 

  43. H. Liu, L. Zhang, Y. Guo, C. Cheng, L. Yang, L. Jiang et al., Reduction of graphene oxide to highly conductive graphene by Lawesson’s reagent and its electrical applications. J. Mater. Chem. C 1(18), 3104–3109 (2013)

    Google Scholar 

  44. V.B. Mohan, R. Brown, K. Jayaraman, D. Bhattacharyya, Characterisation of reduced graphene oxide: effects of reduction variables on electrical conductivity. Mater. Sci. Eng. B 193, 49–60 (2015)

    Google Scholar 

  45. S. Rao, J. Upadhyay, K. Polychronopoulou, R. Umer, R. Das, Reduced graphene oxide: effect of reduction on electrical conductivity. J. Comp. Sci.2(2), 25 (2018)

    Google Scholar 

  46. J. Vaněk, R. Mach, Electrical conductivity of reduced graphene oxide thin-film layers. ECS Trans. 87(1), 253 (2018)

    ADS  Google Scholar 

  47. O. Folorunso, Y. Hamam, R. Sadiku, S.S. Ray, N. Kumar, Investigation and modeling of the electrical conductivity of graphene nanoplatelets-loaded doped-polypyrrole. Polymers 13(7), 1034 (2021)

    Google Scholar 

  48. H. Karimi-Maleh, O.A. Arotiba, Simultaneous determination of cholesterol, ascorbic acid and uric acid as three essential biological compounds at a carbon paste electrode modified with copper oxide decorated reduced graphene oxide nanocomposite and ionic liquid. J. Colloid. Interf. Sci. 560, 208–212 (2020)

    ADS  Google Scholar 

  49. D. Majumdar, N. Baugh, S.K.J.C. Bhattacharya, S.A. Physicochemical, E. Aspects, Ultrasound assisted formation of reduced graphene oxide-copper (II) oxide nanocomposite for energy storage applications. Coll. Surf. A: Physicochem. Eng. Aspects 512, 158–170 (2017)

    Google Scholar 

  50. J. Bellini, R. Machado, M. Morelli, R. Kiminami, Thermal, structural and morphological characterisation of freeze-dried copper (II) acetate monohydrate and its solid decomposition products. Mater. Res. 5(4), 453–457 (2002)

    Google Scholar 

  51. M.A. Bhosale, S.C. Karekar, B.M. Bhanage, Room temperature synthesis of copper oxide nanoparticles: morphological evaluation and their catalytic applications for degradation of dyes and C-N bond formation reaction. ChemistrySelect 1(19), 6297–6307 (2016)

    Google Scholar 

  52. S.K. Kumar, G. Mamatha, H. Muralidhara, M. Anantha, S. Yallappa, B. Hungund et al., Highly efficient multipurpose graphene oxide embedded with copper oxide nanohybrid for electrochemical sensors and biomedical applications. J. Sci.: Adv. Mater. Dev. 2(4), 493–500 (2017)

    Google Scholar 

  53. R. Sarkar, A. Gupta, R. Jamatia, A.K. Pal, Reduced graphene oxide supported copper oxide nanocomposites: an efficient heterogeneous and reusable catalyst for the synthesis of ynones, 1, 3-diynes and 1, 5-benzodiazepines in one-pot under sustainable reaction conditions. Appl. Organomet. Chem. 34(7), e5646 (2020)

    Google Scholar 

  54. B. Sakthivel, G. Nammalvar, Selective ammonia sensor based on copper oxide/reduced graphene oxide nanocomposite. J. Alloy Compd. 788, 422–428 (2019)

    Google Scholar 

  55. Q.-M. Liu, T. Yasunami, K. Kuruda, M. Okido, Preparation of Cu nanoparticles with ascorbic acid by aqueous solution reduction method. Trans. Nonferrous Metal. Soci. China 22(9), 2198–2203 (2012)

    Google Scholar 

  56. R. Zhou, Y. Zheng, D. Hulicova-Jurcakova, S.Z. Qiao, Enhanced electrochemical catalytic activity by copper oxide grown on nitrogen-doped reduced graphene oxide. J. Mater. Chem. A 1(42), 13179–13185 (2013)

    Google Scholar 

  57. R.A. Dar, G.A. Naikoo, P.K. Kalambate, L. Giri, F. Khan, S.P. Karna et al., Enhancement of the energy storage properties of supercapacitors using graphene nanosheets dispersed with macro-structured porous copper oxide. Electrochim. Acta. 163, 196–203 (2015)

    Google Scholar 

  58. Y. Li, D. Yang, J. Cui, Graphene oxide loaded with copper oxide nanoparticles as an antibacterial agent against Pseudomonas syringae pv. tomato. RSC Adv. 7(62), 38853–38860 (2017)

    ADS  Google Scholar 

  59. C. Xu, X. Wang, L. Yang, Y. Wu, Fabrication of a graphene–cuprous oxide composite. J. Solid State Chem. 182(9), 2486–2490 (2009)

    ADS  Google Scholar 

  60. G. Zhong, J. Gong, C. Wang, K. Xu, H. Chen, Comparison of the electrochemical performance and thermal stability for three kinds of charged cathodes. Front. Energy Res.6, 110 (2018)

    Google Scholar 

  61. A. Veluchamy, C.-H. Doh, D.-H. Kim, J.-H. Lee, H.-M. Shin, B.-S. Jin et al., Thermal analysis of LixCoO2 cathode material of lithium ion battery. J. Power Source 189(1), 855–858 (2009)

    ADS  Google Scholar 

Download references

Acknowledgements

Authors thank Tshwane University of Technology, Pretoria, South Africa, for the financial support. SSR thanks the Department of Science and Innovation and Council for Scientific and Industrial Research, South Africa, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oladipo Folorunso.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Folorunso, O., Sadiku, R., Hamam, Y. et al. An investigation of copper oxide-loaded reduced graphene oxide nanocomposite for energy storage applications. Appl. Phys. A 128, 54 (2022). https://doi.org/10.1007/s00339-021-05205-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05205-1

Keywords

Navigation