Skip to main content
Log in

Physical properties of ultrasonically spray deposited Yttrium-doped SnO2 nanostructured films: supported by DFT study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The physical properties of ultrasonically spray deposited Yttrium (Y) doped tin dioxide (SnO2) are experimentally and theoretically investigated. The different diagnostics techniques such as X-ray diffraction (XRD), UV–Vis, scanning electron microscopy (SEM) and Hall effect measurements were performed to analyze the influence of yttrium doping ratio on the structural, optical and electrical properties of Y-doped SnO2 nanostructured films. Additionally, density functional theory (DFT) is applied to calculate and check the energy gap, lattice parameters and optical properties of SnO2 with different Y doping ratios. Super cell of Y-doped SnO2 was formed using Wien2k, and analyzed to physical properties of un-doped and Y doped stoichiometry with different ratios. Theoretical results are in agreement with the experimental results and the literature reports. Experimental results show that the optical band gap of fabricated sample increases with the increasing the Y doping amount in the tin dioxide film. The same tendency of energy band gap is observed with DFT calculation for Y-doped SnO2 compound. Theoretical results also show that the lattice parameter is nearly the same for pure and Y-doped SnO2 case, attributed to a change in the stoichiometry owing to metal doping. XRD results reveal that the all fabricated films are polycrystalline in the tetragonal Bravais lattice of tin dioxide, and the crystallite size, the crystalline orientation are affected by the Y doping level. The nanosized grains of the produced films are manipulated with increasing the Y dopant confirmed by the SEM. Y doped nanostructured films show the higher optical transmittance about 90% in ultra-violet region. Optical band gap gets widen from 3.689 to 3.810 eV with increasing the dopant amount. From Hall effect results, lower resistivity, higher carrier concentration and high enough mobility have been achieved by Y doping for the sample 5 at% Y:SnO2 based TCO film. The obtained results declared that Yttrium doping has an important effect on the optoelectronic properties, in particular, transparency and conductivity of SnO2 nanostructured film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.P. Desai, Improved opto-electrical properties of spray deposited ytterbium doped cadmium oxide thin films. J. Mater. Sci. Mater. El 29, 14416–14426 (2018)

    Article  Google Scholar 

  2. A. Rahal, A. Benhaoua, M. Jlassi, B. Benhaoua, Structural, optical and electrical properties studies of ultrasonically deposited tin oxide (SnO2) thin films with different substrate temperatures. Superlattice Microst. 86, 403–411 (2015)

    Article  ADS  Google Scholar 

  3. N. Manjula, G. Selvan, A.R. Balu, Improved photodegradation activity of SnO2 nanopowder against methyl orange dye through Ag doping. J. Mater. Sci. Mater. El 29, 3657–3664 (2018)

    Article  Google Scholar 

  4. A. Gencer Imer, M. Gülcan, M. Çelebi, A. Tombak, Y. S. Ocak, Effects of the r-GO doping on the structural, optical and electrical properties of CdO nanostructured films by ultrasonic spray pyrolysis,  J. Mater. Sci-Mater.  El. 31(3)  2111–2121  (2020)

    Article  ADS  Google Scholar 

  5. J.K. Rajput, T.K. Pathak, L.P. Purohit, Impact of sputtering power on properties of CdO:ZnO thin films synthesized by composite method for oxygen gas sensing application. J. Electron. Mater. 48, 6640–6646 (2019)

    Article  ADS  Google Scholar 

  6. A.V. Moholkar, S.M. Pawar, K.Y. Rajpure, C.H. Bhosale, J.H. Kim, Effect of fluorine doping on highly transparent conductive spray deposited nanocrystalline tin oxide thin films. Appl. Surf. Sci. 255, 9358–9364 (2009)

    Article  ADS  Google Scholar 

  7. Y. Caglar, M. Caglar, S. Ilican, F. Yakuphanoglu, Determination of the electronic parameters of nanostructure SnO2/p-Si diode. Microelectron Eng. 86, 2072–2077 (2009)

    Article  Google Scholar 

  8. D. Tatar, G. Turgut, E. Sonmez, B. Duzgun, Comparison of some physical properties for SnO2, SnO2: F and SnO2: Sb films deposited on glass substrates. J. Optoelectron. Adv. M 15, 1026–1031 (2013)

    Google Scholar 

  9. M.A. Yildirim, Y. Akaltun, A. Ates, Characteristics of SnO2 thin films prepared by SILAR. Solid State Sci. 14, 1282–1288 (2012)

    Article  ADS  Google Scholar 

  10. H.Y. He, Z.C. Xie, Q.Q. Li, J.S. Li, Q. Zhang, Novel p-type conductivity in SnO2 thin films by Mg doping. J. Alloy Compd. 714, 258–262 (2017)

    Article  Google Scholar 

  11. S.S. Lin, Y.S. Tsai, K.R. Bai, Structural and physical properties of tin oxide thin films for optoelectronic applications. Appl. Surf. Sci. 380, 203–209 (2016)

    Article  ADS  Google Scholar 

  12. A. Tombak, Y.S. Ocak, F. Bayansal, Cu/SnO2 gas sensor fabricated by ultrasonic spray pyrolysis for effective detection of carbon monoxide. Appl. Surf. Sci. 493, 1075–1082 (2019)

    Article  ADS  Google Scholar 

  13. X. Du, Y. Du, S.M. George, In situ examination of tin oxide atomic layer deposition using quartz crystal microbalance and Fourier transform infrared techniques. J. Vac. Sci. Technol. A 23, 581–588 (2005)

    Article  ADS  Google Scholar 

  14. H.P. Dang, Q.H. Luc, V.H. Le, T. Le, The influence of deposition temperature and annealing temperature on Ga-doped SnO2 films prepared by direct current magnetron sputtering. J. Alloy Compd. 687, 1012–1020 (2016)

    Article  Google Scholar 

  15. T. Le, H.P. Dang, Q.H. Luc, V.H. Le, A study of structural, electrical, and optical properties of p-type Zn-doped SnO2 films versus deposition and annealing temperature. J. Phys. D Appl. Phys. 50, 1 (2017)

    Google Scholar 

  16. C.E. Benouis, M. Benhaliliba, Z. Mouffak, A. Avila-Garcia, A. Tiburcio-Silver, M.O. Lopez, R.R. Trujillo, Y.S. Ocak, The low resistive and transparent Al-doped SnO2 films: p-type conductivity, nanostructures and photoluminescence. J. Alloy Compd. 603, 213–223 (2014)

    Article  Google Scholar 

  17. L. Madler, T. Sahm, A. Gurlo, J.D. Grunwaldt, N. Barsan, U. Weimar, S.E. Pratsinis, Sensing low concentrations of CO using flame-spray-made Pt/SnO2 nanoparticles. J. Nanopart. Res. 8, 783–796 (2006)

    Article  ADS  Google Scholar 

  18. K. Galatsis, L. Cukrov, W. Wlodarski, P. McCormick, K. Kalantar-zadeh, E. Comini, G. Sberveglieri, p- and n-type Fe-doped SnO2 gas sensors fabricated by the mechanochemical processing technique. Sens. Actuator B Chem. 93, 562–565 (2003)

    Article  Google Scholar 

  19. M.A. Abdulsattar, S.S. Batros, A.J. Addie, Indium doped SnO2 nanostructures preparation and properties supported by DFT study. Superlattice Microst 100, 342–349 (2016)

    Article  ADS  Google Scholar 

  20. G. Wang, L.K. Wang, Y. Zhu, Y.G. Wang, Y. Su, W.H. Cai, J.K. Yang, H.L. Zhao, Insight into electronic structure and optical properties of Nb and F co-doped SnO2 with hybrid functional theoretical method. Ceram. Int. 46, 10341–10347 (2020)

    Article  Google Scholar 

  21. J.P. Wang, D.B. Li, C.H. Xu, X.M. Yuan, P. Yang, Numerical study on photoelectric characteristics of Mo-doped SnO2. Superlattice Microst. 138, 1 (2020)

    Article  Google Scholar 

  22. J.C. Wang, D.B. Zhou, Y. Li, P. Wu, Experimental and first-principle studies of ferromagnetism in Na-doped SnO2 nanoparticles. Vacuum 141, 62–67 (2017)

    Article  ADS  Google Scholar 

  23. H. Yang, R.L. Han, Y. Yan, X.B. Du, Q. Zhan, H.M. Jin, First-principles study of ferromagnetism in Zn- and Cd-doped SnO2. J. Magn. Magn. Mater. 324, 1764–1769 (2012)

    Article  ADS  Google Scholar 

  24. A. Miglio, R. Saniz, D. Waroquiers, M. Stankovski, M. Giantomassi, G. Hautier, G.M. Rignanese, X. Gonze, Computed electronic and optical properties of SnO2 under compressive stress. Opt. Mater. 38, 161–166 (2014)

    Article  ADS  Google Scholar 

  25. P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K.H. Madsen, L.D. Marks, WIEN2k: an APW+lo program for calculating the properties of solids. J. Chem. Phys. 152, 074101 (2020)

    Article  Google Scholar 

  26. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  27. J.P. Perdew, Density functional theory and the band gap problem. Int. J. Quantum Chem. 28, 497–523 (1985)

    Article  Google Scholar 

  28. A. Tombak, A.G. Imer, R.H.B. Syan, M. Gülcan, S. Gümüş, Y.S. Ocak, Synthesis, characterization, DFT studies, and photodiode application of azo-azomethine-based ligand and its transition-metal complexes. J. Electr. Mater. 47(12), 7240–7250 (2018)

    Article  ADS  Google Scholar 

  29. A. Gencer Imer, Investigation of Al doping concentration effect on the structural and optical properties of the nanostructured CdO thin film, Superlattice. Microst. 92, 278–284 (2016)  

Download references

Acknowledgements

This work was partially supported by the Research Found of Van Yüzüncü Yıl University (Project ID: FAP-2019-8334 and FYL-2018-7302, FDK-2020-9224).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arife Gencer Imer or Murat Aycibin.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya, E., Uğur, A., Gencer Imer, A. et al. Physical properties of ultrasonically spray deposited Yttrium-doped SnO2 nanostructured films: supported by DFT study. Appl. Phys. A 127, 288 (2021). https://doi.org/10.1007/s00339-021-04460-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04460-6

Keywords

Navigation