Skip to main content
Log in

Comparison of gamma and neutron shielding competences of Fe–Cu- and brass-added Portland cement pastes: an experimental and Monte Carlo study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, Portland cement paste samples containing (Fe–Cu)x and brassx (where in x = 0, 5, 10, 15, 20%) were manufactured and some physical and nuclear shielding properties were determined. Experimental measurements for determining the mass attenuation coefficients (μ/ρ) of the cement samples were accomplished by utilizing 133Ba radioactive source with HPGe detector. In addition, gamma transmission factor and μ/ρ values were simulated with MCNPX codes and the experimental results were checked with MCNPX and theoretical WinXCOM results. The largest μ/ρ values were achieved by 20% Fe–Cu- and brass-added samples varying between 0.344–0.098 and 0.363–0.099 cm2/g for 0.081–0.383 photon energy ranges, respectively. To extensively evaluate the photon shielding competences of the cement samples, other vital parameters such as HVL, MFP, Zeff and Nel derived from μ/ρ values were also calculated. It is seen that the highest Zeffs were obtained for 20% brass- and Fe–Cu-added samples, whereas for MFP and HVL and Nel values, the least values were obtained. Additionally, to estimate the neutron shielding effectiveness of the cement samples, effective removal cross section (∑R) values were obtained. The ∑R values varied between 0.1123–0.1349 and 0.1065–0.1361 cm−1 for Fe–Cu- and brass-doped samples, respectively. The data obtained from the current study showed that adding Fe–Cu and brass improves the nuclear shielding properties of the produced cement samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M.H. Kharita, S. Yousef, M. Alnassar, Review on the addition of boron compounds to radiation shielding concrete. Prog. Nucl. Energy (2011). https://doi.org/10.1016/j.pnucene.2010.09.012

    Article  Google Scholar 

  2. I. Akkurt, C. Basyigit, S. Kilincarslan, B. Mavi, A. Akkurt, Radiation shielding of concretes containing different aggregates. Cem. Concr. Compos. (2006). https://doi.org/10.1016/j.cemconcomp.2005.09.006

    Article  Google Scholar 

  3. H.O. Tekin, M.I. Sayyed, S.A.M. Issa, Gamma radiation shielding properties of the hematite-serpentine concrete blended with WO3 and Bi2O3 micro and nano particles using MCNPX code. Radiat. Phys. Chem. (2018). https://doi.org/10.1016/j.radphyschem.2018.05.002

    Article  Google Scholar 

  4. A. Mesbahi, H. Ghiasi, Shielding properties of the ordinary concrete loaded with micro- and nano-particles against neutron and gamma radiations. Appl. Radiat. Isot. (2018). https://doi.org/10.1016/j.apradiso.2018.02.004

    Article  Google Scholar 

  5. B. Oto, A. Gür, E. Kavaz, T. Çakır, N. Yaltay, Determination of gamma and fast neutron shielding parameters of magnetite concretes. Prog. Nucl. Energy (2016). https://doi.org/10.1016/j.pnucene.2016.06.011

    Article  Google Scholar 

  6. V.P. Singh, N.M. Badiger, Gamma ray and neutron shielding properties of some alloy materials. Ann. Nucl. Energy (2014). https://doi.org/10.1016/j.anucene.2013.10.003

    Article  Google Scholar 

  7. N. Ekinci, E. Kavaz, B. Aygün, U. Perişanoğlu, Gamma ray shielding capabilities of rhenium-based superalloys. Radiat. Eff. Defects Solids 0150, 1–17 (2019). https://doi.org/10.1080/10420150.2019.1596110

    Article  Google Scholar 

  8. E. Kavaz, N. Ekinci, H.O. Tekin, M.I. Sayyed, B. Aygün, U. Perişanoğlu, Estimation of gamma radiation shielding qualification of newly developed glasses by using WinXCOM and MCNPX code. Prog. Nucl. Energy 115, 12–20 (2019). https://doi.org/10.1016/j.pnucene.2019.03.029

    Article  Google Scholar 

  9. E. Kavaz, H.O. Tekin, O. Agar, E.E. Altunsoy, O. Kilicoglu, M. Kamislioglu, M.M. Abuzaid, M.I. Sayyed, The Mass stopping power/projected range and nuclear shielding behaviors of barium bismuth borate glasses and influence of cerium oxide. Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.05.028

    Article  Google Scholar 

  10. E. Kavaz, An experimental study on gamma ray shielding features of lithium borate glasses doped with dolomite, hematite and goethite minerals. Radiat. Phys. Chem. (2019). https://doi.org/10.1016/j.radphyschem.2019.03.032

    Article  Google Scholar 

  11. B. Oto, N. Yildiz, F. Akdemir, E. Kavaz, Investigation of gamma radiation shielding properties of various ores. Prog. Nucl. Energy (2015). https://doi.org/10.1016/j.pnucene.2015.07.016

    Article  Google Scholar 

  12. B. Oto, N. Yildiz, T. Korkut, E. Kavaz, Neutron shielding qualities and gamma ray buildup factors of concretes containing limonite ore. Nucl. Eng. Des. (2015). https://doi.org/10.1016/j.nucengdes.2015.07.060

    Article  Google Scholar 

  13. D. Sarıyer, R. Küçer, N. Küçer, Neutron shielding properties of concretes containing boron carbide and ferro-boron. Procedia Soc. Behav. Sci. (2015). https://doi.org/10.1016/j.sbspro.2015.06.320

    Article  Google Scholar 

  14. I. Akkurt, H. Akyildirim, B. Mavi, S. Kilincarslan, C. Basyigit, Radiation shielding of concrete containing zeolite. Radiat. Meas. (2010). https://doi.org/10.1016/j.radmeas.2010.04.012

    Article  Google Scholar 

  15. K. Sakr, E. El-Hakim, Effect of high temperature or fire on heavy weight concrete properties. Cem. Concr. Res. (2005). https://doi.org/10.1016/j.cemconres.2004.05.023

    Article  Google Scholar 

  16. N. Gineys, G. Aouad, D. Damidot, Managing trace elements in Portland cement—part I: ınteractions between cement paste and heavy metals added during mixing as soluble salts. Cem. Concr. Compos. (2010). https://doi.org/10.1016/j.cemconcomp.2010.06.002

    Article  Google Scholar 

  17. K. Singh, S. Singh, A.S. Dhaliwal, G. Singh, Gamma radiation shielding analysis of lead-flyash concretes. Appl. Radiat. Isot. (2015). https://doi.org/10.1016/j.apradiso.2014.10.022

    Article  Google Scholar 

  18. S. Ghazizadeh, P. Duffour, N.T. Skipper, Y. Bai, Understanding the behaviour of graphene oxide in Portland cement paste. Cem. Concr. Res. (2018). https://doi.org/10.1016/j.cemconres.2018.05.016

    Article  Google Scholar 

  19. R. Florez, H.A. Colorado, C.H.C. Giraldo, A. Alajo, Preparation and characterization of Portland cement pastes with Sm2O3 microparticle additions for neutron shielding applications. Constr. Build. Mater. (2018). https://doi.org/10.1016/j.conbuildmat.2018.10.019

    Article  Google Scholar 

  20. M.A. Fusco, L. Winfrey, M.A. Bourham, Shielding properties of protective thin film coatings and blended concrete compositions for high level waste storage packages. Ann. Nucl. Energy (2016). https://doi.org/10.1016/j.anucene.2015.11.026

    Article  Google Scholar 

  21. E.S.A. Waly, M.A. Bourham, Comparative study of different concrete composition as gamma-ray shielding materials. Ann. Nucl. Energy (2015). https://doi.org/10.1016/j.anucene.2015.05.011

    Article  Google Scholar 

  22. Y. Yao, X. Zhang, M. Li, R. Yang, T. Jiang, J. Lv, Investigation of gamma ray shielding efficiency and mechanical performances of concrete shields containing bismuth oxide as an environmentally friendly additive. Radiat. Phys. Chem. (2016). https://doi.org/10.1016/j.radphyschem.2016.06.028

    Article  Google Scholar 

  23. V.I. Levitas, A.M. Roy, D.L. Preston, Multiple twinning and variant-variant transformations in martensite: phase-field approach. Phys. Rev. B Condens. Matter Mater. Phys. (2013). https://doi.org/10.1103/physrevb.88.054113

    Article  Google Scholar 

  24. V.I. Levitas, A.M. Roy, Multiphase phase field theory for temperature- and stress-induced phase transformations. Phys. Rev. B Condens. Matter Mater. Phys. (2015). https://doi.org/10.1103/physrevb.91.174109

    Article  Google Scholar 

  25. V.I. Levitas, A.M. Roy, Multiphase phase field theory for temperature-induced phase transformations: formulation and application to interfacial phases. Acta Mater. (2016). https://doi.org/10.1016/j.actamat.2015.12.013

    Article  Google Scholar 

  26. M. Armoosh, S.R. Oltulu, Self-heating of electrically conductive metal-cementitious composites. J. Intell. Mater. Syst. Struct. (2019). https://doi.org/10.1177/1045389x19862373

    Article  Google Scholar 

  27. S.R. Armoosh, M. Oltulu, Effect of different micro metal powders on the electrical resistivity of cementitious composites, in IOP Conference Series: Materials Science and Engineering, 2019. https://doi.org/10.1088/1757-899x/471/3/032075

  28. S.R. Armoosh, M. Oltulu, Self-heating of electrically conductive metal-cementitious composites. J. Intell. Mater. Syst. Struct. (2019). https://doi.org/10.1177/1045389X19862373

    Article  Google Scholar 

  29. M. Çelikbilek Ersundu, A.E. Ersundu, M.I. Sayyed, G. Lakshminarayana, S. Aydin, Evaluation of physical, structural properties and shielding parameters for K2O–WO3–TeO2 glasses for gamma ray shielding applications. J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.04.223

    Article  Google Scholar 

  30. H.O. Tekin, E.E. Altunsoy, E. Kavaz, M.I. Sayyed, O. Agar, M. Kamislioglu, Photon and neutron shielding performance of boron phosphate glasses for diagnostic radiology facilities. Results Phys. (2019). https://doi.org/10.1016/j.rinp.2019.01.060

    Article  Google Scholar 

  31. M.I. Sayyed, Half value layer, mean free path and exposure buildup factor for tellurite glasses with different oxide compositions. J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2016.11.318

    Article  Google Scholar 

  32. Z. Yalçn, O. Içelli, M. Okutan, R. Boncukçuoglu, O. Artun, S. Orak, A different perspective to the effective atomic number (Zeff) for some boron compounds and trommel sieve waste (TSW) with a new computer program ZXCOM. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect Assoc. Equip. (2012). https://doi.org/10.1016/j.nima.2012.05.041

    Article  Google Scholar 

  33. S.A.M. Issa, Effective atomic number and mass attenuation coefficient of PbO–BaO–B2O3 glass system. Radiat. Phys. Chem. (2016). https://doi.org/10.1016/j.radphyschem.2015.11.025

    Article  Google Scholar 

  34. M.F. Kaplan, Concrete Radiation Shielding: Nuclear Physics, Concrete Properties, Design and Construction (Wiley, New York, 1989)

    Google Scholar 

  35. A. Mesbahi, A.A. Azarpeyvand, A. Shirazi, Photoneutron production and backscattering in high density concretes used for radiation therapy shielding. Ann. Nucl. Energy (2011). https://doi.org/10.1016/j.anucene.2011.08.023

    Article  Google Scholar 

  36. K. Verdipoor, A. Alemi, A. Mesbahi, Photon mass attenuation coefficients of a silicon resin loaded with WO3, PbO, and Bi2O3 micro and nano-particles for radiation shielding. Radiat. Phys. Chem. (2018). https://doi.org/10.1016/j.radphyschem.2018.02.017

    Article  Google Scholar 

  37. H.O. Tekin, L.R.P. Kassab, S.A.M. Issa, C.D.S. Bordon, E.E. Altunsoy Guclu, G.R. da Silva Mattos, O. Kilicoglu, Synthesis and nuclear radiation shielding characterization of newly developed germanium oxide and bismuth oxide glasses. Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.08.204

    Article  Google Scholar 

  38. S.A.M. Issa, H.O. Tekin, T.T. Erguzel, G. Susoy, The effective contribution of PbO on nuclear shielding properties of xPbO–(100–x)P2O5 glass system: a broad range investigation. Appl. Phys. A (2019). https://doi.org/10.1007/s00339-019-2941-x

    Article  Google Scholar 

  39. S.A.M. Issa, H.O. Tekin, The multiple characterization of gamma, neutron and proton shielding performances of xPbO–(99 − x)B2O3–Sm2O3 glass system. Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.08.065

    Article  Google Scholar 

  40. H.O. Tekin, V.P. Singh, T. Manici, Effects of micro-sized and nano-sized WO3 on mass attenauation coefficients of concrete by using MCNPX code. Appl. Radiat. Isot. (2017). https://doi.org/10.1016/j.apradiso.2016.12.040

    Article  Google Scholar 

  41. E. Kavaz, H.O. Tekin, N.Y. Yorgun, F. Özdemir, M.I. Sayyed, Structural and nuclear radiation shielding properties of bauxite ore doped lithium borate glasses: experimental and Monte Carlo study. Radiat. Phys. Chem. (2019). https://doi.org/10.1016/j.radphyschem.2019.05.019

    Article  Google Scholar 

  42. H.O. Tekin, E. Kavaz, E.E. Altunsoy, M. Kamislioglu, O. Kilicoglu, O. Agar, M.I. Sayyed, N. Tarhan, Characterization of a broad range gamma-ray and neutron shielding properties of MgO–Al2O3–SiO2–B2O3 and Na2O–Al2O3–SiO2 glass systems. J. Non Cryst. Solids (2019). https://doi.org/10.1016/j.jnoncrysol.2019.05.012

    Article  Google Scholar 

  43. O. Kilicoglu, E.E. Altunsoy, O. Agar, M. Kamislioglu, M.I. Sayyed, H.O. Tekin, N. Tarhan, Synergistic effect of La2O3 on mass stopping power (MSP)/projected range (PR) and nuclear radiation shielding abilities of silicate glasses. Results Phys. (2019). https://doi.org/10.1016/j.rinp.2019.102424

    Article  Google Scholar 

  44. H.O. Tekin, E. Kavaz, A. Papachristodoulou, M. Kamislioglu, O. Agar, E.E. Altunsoy Guclu, O. Kilicoglu, M.I. Sayyed, Characterization of SiO2–PbO–CdO–Ga2O3 glasses for comprehensive nuclear shielding performance: alpha, proton, gamma, neutron radiation. Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.06.168

    Article  Google Scholar 

  45. H.O. Tekin, T. Manici, Simulations of mass attenuation coefficients for shielding materials using the MCNP-X code. Nucl. Sci. Tech. (2017). https://doi.org/10.1007/s41365-017-0253-4

    Article  Google Scholar 

  46. H.O. Tekin, MCNP-X Monte Carlo code application for mass attenuation coefficients of concrete at different energies by modeling 3 × 3 ınch NaI(Tl) detector and comparison with XCOM and Monte Carlo data. Sci. Technol. Nucl. Install. (2016). https://doi.org/10.1155/2016/6547318

    Article  Google Scholar 

  47. I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy (1997). https://doi.org/10.1016/S0306-4549(97)00003-0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Perişanoğlu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perişanoğlu, U., Kavaz, E., Tekin, H.O. et al. Comparison of gamma and neutron shielding competences of Fe–Cu- and brass-added Portland cement pastes: an experimental and Monte Carlo study. Appl. Phys. A 126, 470 (2020). https://doi.org/10.1007/s00339-020-03648-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03648-6

Keywords

Navigation