Skip to main content

Advertisement

Log in

Ni- and Cu-doping effects on formation and migration energies of oxygen vacancies in Ba0.5Sr0.5Fe1−x (Cu/Ni) xO3−δ perovskites: a DFT + U study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The bulk oxygen vacancy formation, migration energy and surface migration energy of BSFCu and BSFNi are calculated in this article. Two important factors affecting the formation and migration energies: the vacancy concentration and Cu/Ni doping are studied. With Cu/Ni doping, the oxygen vacancy formation energy decreases [Evac (BSF \(>\) BSCF \(>\) BSFNi \(>\) BSFCu)]. The activation energies of BSFNi and BSFCu are lower than those of BSF and BSCF cathodes. Therefore, Cu/Ni-doped BSF shows the enhancement of electrochemical activity. We also calculated the surface migration energies of (011) Ba0.5Sr0.5Fe0.75Cu.0.25O3−δ for δ = 0.125, 0.25 and (001) Ba0.5Sr0.5Fe0.75(Cu/Ni)0.25O3−δ for δ = 0.125, which for (011) BSFCu are higher than the bulk value but for (001) BSFCu and BSFNi are lower than the bulk value due to geometry considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Note:  EOvac (with two vacancies) equation is the sum of the formation energies of the two vacancies. To readily compare between the formation energies of δ = 0.125 and 0.25, we calculated the average formation energy per vacancy (Esum/2).

References

  1. R. O'Hayre, S. Won cha, W. Colella, F.B. Prinz, Fuel Cell Fundamental, 2nd edn. (Wiley, Hoboken, 2009)

    Google Scholar 

  2. S.C. Singhal, K. Kendall, High Temperature Solid Oxide Fuel Cells (Elsevier, Oxford, 2003)

    Google Scholar 

  3. Y.-M. Kim, P. Kim-Lohsoontorn, S.-W. Baek, J. Bae, Int. J. Hydrog. Energy 36, 3138 (2011)

    Article  Google Scholar 

  4. S.M. Haile, Z. Shao, Nature 431, 170 (2004)

    Article  ADS  Google Scholar 

  5. Z. Chen, R. Ran, W. Zhou, Z. Shao, S. Liu, Electrochim Acta 52, 7343 (2007)

    Article  Google Scholar 

  6. W. Zhou, Z. Shao, R. Ran, P. Zeng, H. Gu, W. Jin, N. Xu, J. Power Sources 168, 330 (2007)

    Article  ADS  Google Scholar 

  7. F. Shen, K. Lu, J. Power Sources 296, 318 (2015)

    Article  ADS  Google Scholar 

  8. C. Sun, R. Hui, J. Roller, J. Solid State Electrochem. 14, 1125 (2009)

    Article  Google Scholar 

  9. Y.A. Mastrikov, M.M. Kuklja, E.A. Kotomin, J. Maier, Energy Environ. Sci. 3, 1544 (2010)

    Article  Google Scholar 

  10. E.A. Kotomin, R. Merkle, YuA Mastrikov, M.M. Kuklja, J. Maier, ECS Trans. 35, 823 (2011)

    Article  Google Scholar 

  11. M.M. Kuklja, Y.A. Mastrikov, B. Jansang, E.A. Kotomin, J. Phys. Chem. C 116, 18605 (2012)

    Article  Google Scholar 

  12. Y.A. Mastrikov, R. Merkle, E.A. Kotomin, M.M. Kuklja, J. Maier, Phys. Chem. Chem. Phys. 15, 911 (2013)

    Article  Google Scholar 

  13. S. Ganopadhyay, A.E. Masunov, T. Inerbaev, J. Mesit, R.K. Guha, A.K. Sleiti, J.S. Kapat, Solid State Ion. 181, 1067 (2010)

    Article  Google Scholar 

  14. S. Gangopadhayay, T. Inerbaev, A.E. Masunov, D. Altilio, N. Orlovskaya, Appl. Mater. Interfaces. 1(7), 1512 (2009)

    Article  Google Scholar 

  15. M.M. Kuklja, Y.A. Mastrikov, B. Jansang, E.A. Kotomin, Solid State Ion. 230, 21 (2013)

    Article  Google Scholar 

  16. S. Švarcová, K. Wiik, J. Tolchard, H.J.M. Bouwmeester, T. Grande, Solid State Ion. 178, 1787 (2008)

    Article  Google Scholar 

  17. J. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  18. D. Vanderbilt, Phys. Rev. B. 41, 7892 (1990)

    Article  ADS  Google Scholar 

  19. P.Giannozzi et al. J. Phys. Condens. Matter 21, 395502 (2009)

    Article  Google Scholar 

  20. P. Alippi, V. Fiorentini, Eur. Phys. J. B 85, 82 (2012)

    Article  ADS  Google Scholar 

  21. Z. Li, R. Laskowski, T. Iitaka, T. Tohyama, Phys. Rev. B 85, 134419 (2012)

    Article  ADS  Google Scholar 

  22. L. Wang, T. Maxisch, G. Ceder, Phys. Rev. B 73, 195107 (2006)

    Article  ADS  Google Scholar 

  23. N. Marzari, D. Vanderbilt, A. De Vita, M.C. Payne, Phys. Rev. Lett. 82, 3296 (1999)

    Article  ADS  Google Scholar 

  24. G. Henkelman, B.P. Uberuaga, H. Jonsson, J. Chem. Phys. 113, 9901 (2000)

    Article  ADS  Google Scholar 

  25. G. Mills, H. Jonsson, G. Schenter, Surf. Sci. 324, 305 (1995)

    Article  ADS  Google Scholar 

  26. S. Vazquez, J. Basbus, A.L. Soldati, F. Napolitano, A. Serquis, L. Suescun, J. Power Sources 274, 318 (2015)

    Article  ADS  Google Scholar 

  27. J.F. Basbus, F.D. Prado, A. Caneiro, L.V. Mogni, J. Electroceram. 32, 311 (2014)

    Article  Google Scholar 

  28. R.D.Johnson ΙΙΙ (ed.), NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101. http://cccbdb.nist.gov

  29. B. Bokstein, M.I. Mendelev, D.J. Srolovitz, Thermodynamics and Kinetics in Materials Science, A Short Course (Oxford University Press, New York, 2005)

    Google Scholar 

  30. S. Vazquez, L. Suescun, R. Faccio, J. Power Sources 311, 13 (2016)

    Article  ADS  Google Scholar 

  31. E.A. Kotomin, YuA Mastrikov, M.M. Kuklja, R. Merkle, A. Roytburd, J. Maier, Solid State Ion. 188, 1 (2011)

    Article  Google Scholar 

  32. Y. Choi, M.C. Lin, M. Liu, J. Power Sources 195, 1441 (2010)

    Article  ADS  Google Scholar 

  33. T. Roohandeh, E. Saievar-Iranizad, Mater. Chem. Phys. 226, 371 (2019)

    Article  Google Scholar 

  34. Z. Yang, T.K. Woo, M. Baudin, K. Hermansson, J. Chem. Phys. 120, 7741 (2004)

    Article  ADS  Google Scholar 

  35. K. Kerman, B.-K. Lai, S. Ramanathan, J. Power Sources 196, 6214 (2011)

    Article  ADS  Google Scholar 

  36. K.W. Song, K.T. Lee, Ceram. Int. 38, 5123 (2012)

    Article  Google Scholar 

  37. K. Efimov, T. Halfer, A. Kuhn, P. Heitjans, J.R. Caro, A. Feldhoff, Chem Mater 22, 1540 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Research Council of the Tarbiat Modares University for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaiel Saievar-Iranizad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roohandeh, T., Saievar-Iranizad, E. Ni- and Cu-doping effects on formation and migration energies of oxygen vacancies in Ba0.5Sr0.5Fe1−x (Cu/Ni) xO3−δ perovskites: a DFT + U study. Appl. Phys. A 125, 552 (2019). https://doi.org/10.1007/s00339-019-2842-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2842-z

Navigation