Skip to main content
Log in

Design and analysis of nano-scaled SOI MOSFET-based ring oscillator circuit for high density ICs

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper presents the design and analysis of ring oscillator circuit based on nano-scaled SOI MOSFETs for low power applications. Recently, fully depleted silicon-on-insulator (FD SOI) MOSFETs have been recognised as the most viable technology at nanometer nodes. Therefore, it is necessary to analyze the electrical performance of SOI technology MOSFETs and their switching characteristics. In this contribution, firstly we have investigated the short channel immunity of dual metal insulated gate (DMIG) technique-based FD SOI MOSFET and its electrical characteristics has been compared and contrasted with the available state-of-arts. The device has been designed and simulated using numerical ATLAS SILVACO simulator. FD SOI technology along with DMIG technique found to be a better solution, and provide excellent performance (higher Ion/Ioff ratio, and lower sub-threshold slope) than other techniques reported at this node. Additionally, the detailed analysis of surface potential profile, electric field, electron concentration, and the contour plot of conduction current density have been taken into account. Further, for the first time, DMIG FD SOI MOSFET-based CMOS inverter and ring oscillator circuits have been designed using the same numerical simulator. DC and transient analysis itself explains that the designed CMOS inverter and ring oscillator offer lower voltage of operation with reduced power consumption, and high noise immunity. The oscillation frequency of ring oscillator is found as 84.18 GHz at 50 nm channel length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. H.R. Erfani-Jazi, N. Ghaderi, A divider-less, high speed and wide locking range phase locked loop. Int. J Electron. Commun. AEU 69, 722–729 (2015). https://doi.org/10.1016/j.aeue.2014.12.015

    Article  Google Scholar 

  2. A.E. Oualkadi, J.-M. Paillot, H. Guegnaud, R. Allam, CMOS RF switched capacitor bandpass filter tuned by ring VCO. Int. J. Electron. Commun. AEU 59, 352–358 (2005). https://doi.org/10.1016/j.aeue.2004.11.008

    Article  Google Scholar 

  3. S. Ahmad, N. Alam, M. Hasan, Robust TFET SRAM cell for ultra-low power IoT applications Int. J Electron. Commun. AEU 89, 70–76 (2018). https://doi.org/10.1016/j.aeue.2018.03.029

    Article  Google Scholar 

  4. N. Gupta, R. Chaujar, Influence of gate metal engineering on small signal and noise behaviour of silicon nanowire MOSFET for low-noise amplifiers. Appl. Phys. A 122(8), 717 (2016). https://doi.org/10.1007/s00339-016-0239-9

    Article  ADS  Google Scholar 

  5. W.H. Krautschneider, A. Kohlhase, H. Terletzki, Scaling down and reliability problems of gigabit CMOS circuits. Microelectron. Reliab. 37(1), 19–37 (1997). https://doi.org/10.1016/0026-2714(96)00236-3

    Article  Google Scholar 

  6. K.L. Wang, W. Lynch, Scenarios of CMOS scaling. in 5th IEEE International Conference on Solid-State and IC Technology, pp. 12–16. (1997). https://doi.org/10.1109/icsict.1998.785772

  7. M. Saremi, A. Afzali-Kusha, S. Mohammadi, Ground plane fin-shaped field transistor (GP-FinFET) for low leakage power circuits. Microelectron. Eng. 95, 74–82 (2012). https://doi.org/10.1016/j.mee.2012.01.009

    Article  Google Scholar 

  8. N. Trivedi, M. Kumar, S. Haldar, S.S. Deswal, M. Gupta, R.S. Gupta, Charge plasma technique based dopingless accumulation mode junctionless cylindrical surrounding gate MOSFET: analog performance improvement. Appl. Phys. A 123, 564 (2017). https://doi.org/10.1007/s00339-017-1176-y

    Article  ADS  Google Scholar 

  9. J.P. Colinge, Silicon-on-Insulator Technology, 2nd edn., Materials to VLSI (Kluwer Academic Publishers, Amsterdam, 1997). ISBN 978-1-4757-2611-4

    Book  Google Scholar 

  10. U. Khan, B. Ghosh, M.W. Akram, A.K. Salimath, A comparative study of SELBOX-JLT and SOI-JLT. Appl. Phys. A 117(4), 2281–2288 (2014). https://doi.org/10.1007/s00339-014-8661-3

    Article  ADS  Google Scholar 

  11. K.K. Young, Short channel effect in fully depleted SOI MOSFETs. IEEE Tran. Electron. Dev. 36(2), 399–401 (1989). https://doi.org/10.1109/16.19942

    Article  ADS  Google Scholar 

  12. K. Suzuki, S. Pidin, Short channel single-gate SOI MOSFET model. IEEE Trans. Electron. Dev. 50(5), 1297–1305 (2005). https://doi.org/10.1109/TED.2003.813450

    Article  ADS  Google Scholar 

  13. Y. Nakajima, H. Tomita, K. Aoto, N. Ito, T. Hanajiri, T. Toyabe, T. Morikawa, T. Sugano, Characterization of trap states at silicon on-insulator (SOI)/Buried oxide (BOX) interface by back gate transconductance characteristics in SOI MOSFETs. Jpn. J. Appl. Phys. Regul. Rap. Short Notes 42(4B), 2004–2008 (2003)

    Article  ADS  Google Scholar 

  14. K. Cheng, A. Khakifirooz, Fully depleted SOI (FDSOI) technology. Sci. China Inf. Sci. 59(061402), 1–15 (2016). https://doi.org/10.1007/s11432-016-5561-5

    Article  Google Scholar 

  15. V.K. Mishra, R.K. Chauhan, Performance analysis of modified source and TDBC based fully-depleted SOI MOSFET for low power digital applications. J. Nano Optoelectron. 12(1), 59–66 (2017). https://doi.org/10.1166/jno.2017.2000

    Article  Google Scholar 

  16. N.A. Srivastava, V.K. Mishra, R.K. Chauhan, Analytical modelling of surface potential of modified source FD-SOI MOSFET. in IEEE International Conference on Emerging Trends in Communication Technologies (ETCT), pp. 1–4. (2016). https://doi.org/10.1109/etct.2016.7882990

  17. S. Mukherjee, S. Roy, A. Dutta, C.K. Sarkar, Study of effect of back oxide thickness variation in FDSOI MOSFET on analogue circuit performance. IET Circ. Dev. Syst. 10(6), 497–503 (2016). https://doi.org/10.1049/iet-cds.2016.0234

    Article  Google Scholar 

  18. T. Ushiki, M. C. Yu, K. Kawai, T. Shinohara, K. Ino, M. Morita, T. Ohmi, Reduction of plasma-induced gate oxide using low-energy large-mass ion bombardment in gate-metal sputtering deposition. in Proceedings of International Reliability Physics Symposium, Reno, Nevada, pp. 307–11. (1998). https://doi.org/10.1109/relphy.1998.670661

  19. J.P. Colinge, Multi-gate SOI MOSFETs. microelectronics. Engineering 84(9–10), 2071–2076 (2007). https://doi.org/10.1016/j.mee.2007.04.038

    Article  Google Scholar 

  20. M.J. Kumar, A. Chaudhary, Two dimensional analytical modeling of fully depleted DMG SOI MOSFET and evidence for diminished SCEs. IEEE Trans. Electron. Dev. 51(4), 569–574 (2004). https://doi.org/10.1109/TED.2004.823803

    Article  ADS  Google Scholar 

  21. A. Priya, R.A. Mishra, A two dimensional analytical modeling of surface potential in triple metal gate (TMG) fully-depleted recessed-source/drain (Re-S/D) SOI MOSFET. Superlattice Microstruct. 92, 316–329 (2016)

    Article  ADS  Google Scholar 

  22. Y.C. Yeo, Metal gate technology for nanoscale transistors-material selection and process integration issues. Thin Solid Films 462–463, 34–41 (2004). https://doi.org/10.1016/j.tsf.2004.05.039

    Article  ADS  Google Scholar 

  23. S. Wei, G. Zhang, Z. Shao, L. Geng, C.-F. Yang, Analysis of a high-performance ultra-thin box silicon-on-insulator MOSFET with the lateral dual-gates: featuring the suppression of DIBL. Microsyst. Technol. 3, 150 (2017). https://doi.org/10.1007/s00542-017-3532-4

    Article  Google Scholar 

  24. W.-J. Cho, C.-G. Ahn, K. Im, J.-H. Yang, J. Oh, I.-B. Baek, S. Lee, Fabrication of 50-nm gate SOI n-MOSFETs using novel plasma-doping technique. IEEE Electron. Dev. Lett. 25(6), 366–368 (2003). https://doi.org/10.1109/led.2004.829007

    Article  ADS  Google Scholar 

  25. J. Luo, J. Chen, Q. Wu, Z. Chai, T. Yu, X. Wang, TDBC SOI technology to suppress floating body effect in PD SOI p-MOSFETs. IEEE Electron. Lett. 48(11), 652–653 (2012)

    Article  Google Scholar 

  26. C. Fenouillet-Beranger, S. Denorme, P. Perreau, C. Buj, O. Faynot, F. Andrieu, L. Tosti, S. Barnola, T. Salvetat, X. Garros, M. Cassé, F. Allain, N. Loubet, L. Pham-Nguyen, E. Deloffre, M. Gros-Jean, R. Beneyton, C. Laviron, M. Marin, C. Leyris, S. Haendler, F. Leverd, P. Gouraud, P. Scheiblin, L. Clement, R. Pantel, S. Deleonibus, T. Skotnicki, FDSOI devices with thin BOX and ground plane integration for 32 nm node and below. Solid State Electron. 53, 730–734 (2009). https://doi.org/10.1016/j.sse.2009.02.009

    Article  ADS  Google Scholar 

  27. W. Long, H. Ou, J.M. Kuo, K.K. Chin, Dual-material gate (DMG) field effect transistor. IEEE Trans. Electron. Dev. 46(5), 865–870 (1999). https://doi.org/10.1109/16.760391

    Article  ADS  Google Scholar 

  28. R. Narang, K.V.S. Reddy, M. Saxena, R.S. Gupta, M. Gupta, A dielectric-modulated tunnel-FET-based biosensor for label-free detection: analytical modeling study and sensitivity analysis. IEEE Trans. Electron. Dev. 59(10), 2809–2817 (2012). https://doi.org/10.1109/ted.2012.2208115

    Article  ADS  Google Scholar 

  29. J.H. Ahn, J.Y. Kim, M. Im, J.W. Han, Y.K. Choi, A nanogap-embedded nanowire field effect transistor for sensor applications: Immunosensor and humidity sensor. In Proceedings of 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences, pp. 1301–1303 (2010)

  30. M. Im, J.H. Ahn, J.W. Han, T.J. Park, S.Y. Lee, Y.K. Choi, Development of a point-of-care testing platform with a nanogap-embedded separated double-gate field effect transistor array and its readout system for detection of avian influenza. IEEE Sens. J. 11(2), 351–360 (2011). https://doi.org/10.1109/JSEN.2010.2062502

    Article  ADS  Google Scholar 

  31. Silvaco Int, Atlas User’s Manual (Silvaco Int, Santa Clara, 2015)

    Google Scholar 

  32. W. Yeh, C. Lin, T. Chou, K. Wu, J. Yuan, The impact of junction doping distribution on device performance variability and reliability for fully depleted silicon on insulator with thin box layer MOSFETs. IEEE Trans Nanotechnol. 12(2), 330–337 (2015). https://doi.org/10.1109/TNANO.2015.2394247

    Article  ADS  Google Scholar 

  33. V.K. Mishra, R.K. Chauhan, Area efficient layout design of CMOS circuit for high-density ICs. Int. J. Electron. 105(1), 73–87 (2017). https://doi.org/10.1080/00207217.2017.1340978

    Article  Google Scholar 

  34. S. Roy, S. Mukherjee, A. Dutta, C.K. Sarkar, Effect of back oxide thickness of FDSOI on SRAM performance. Superlattice Microstruct. 98, 316–324 (2016)

    Article  ADS  Google Scholar 

  35. S.-M. Kang, Y. Leblebici, CMOS Digital Integrated Circuits Analysis and Design (McGraw-Hill, New York, 2003)

    Google Scholar 

  36. A. Vandooren, S. Egley, M. Zavala, T. Stephens, L. Mathew, M. Rossow, A. Thean, A. Barr, Z. Shi, T. White, D. Pham, J. Conner, L. Prabhu, D. Triyoso, J. Schaeffer, D. Roan, B.-Y. Nguyen, M. Orlowski, J. Mogab, 50 nm Fully depleted SOI CMOS technology with HfO2 gate dielectric and TiN gate. IEEE Trans. Nanotechnol. 4(2), 324–328 (2003). https://doi.org/10.1109/TNANO.2003.820502

    Article  ADS  Google Scholar 

  37. S.R. Panda, Device and circuit performance of Si-based accumulation mode CGAA CMOS inverter. Mater. Sci. Semicond. Process. 66, 87–91 (2017)

    Article  Google Scholar 

  38. D. Bianchi, F. Quaglia, A. Mazzanti, F. Svelto, Analysis and design of a high voltage integrated class-B amplifier for ultra-sound transducers. IEEE Trans. Circ. Syst. I 61(7), 1942–1951 (2014). Regular Papers

    Google Scholar 

  39. N. Collaert, A. Dixit, M. Goodwin, K.G. Anil, R. Rooyackers, B. Degroote, L.H.A. Leunissen, A. Veloso, R. Jonckheere, K.D. Meyer, M. Jurczak, S. Biesemans, A functional 41-stage ring oscillator using scaled FinFET devices with 25-nm gate lengths and 10-nm fin widths applicable for the 45-nm CMOS node. IEEE Electron. Dev. Lett. 25(8), 568–570 (2004)

    Article  ADS  Google Scholar 

  40. S.K.A. Kulkarni, A novel voltage-controlled ring oscillator based on nanoscale DG-MOSFETs. in IEEE International Conference on Microelectronics, pp. 417–420 (2008)

  41. R.C. Shah, M. Abdullah, Optimal design of ring oscillator and differential LC using 45 nm CMOS technology. Int. J. Innov. Res. Sci. Technol. 2(10), 1–5 (2016)

    Google Scholar 

  42. S. Mukherjee, S. Roy, K. Koley, A. Dutta, C.K. Sarkar, Design and study of programmable ring oscillator using IDUDGMOSFET. Solid State Electron. 117, 193–198 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported with the resources of VLSI Laboratory of MNNIT Allahabad under Special Manpower Development Programme Chip to System Design (SMDP-C2SD) project funded by MeitY, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilesh Anand Srivastava.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, N.A., Priya, A. & Mishra, R.A. Design and analysis of nano-scaled SOI MOSFET-based ring oscillator circuit for high density ICs. Appl. Phys. A 125, 533 (2019). https://doi.org/10.1007/s00339-019-2828-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2828-x

Navigation