Skip to main content

Advertisement

Log in

Performance enhancement of cellulose-based biocomposite ionic actuator by doping with MWCNT

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

To enhance the performance of ionic actuators, the electrochemical and electromechanical properties of green ionic actuators with the electrolyte layer after doping with MWCNT was investigated in this paper. The surface morphology, elemental composition, corresponding content and functional group of the mixed electrolyte layer were observed and characterized by SEM–EDS, FT-IR and XRD. The CV test showed that when the doping amount was 0.8 wt%, the specific capacitance increases 187.6% and 205.3% compared with undoped electrolyte layer at the sweep speed of 20 mV s−1,500 mV s−1, respectively. The GCD test showed that the energy density increased to 144.3% at the current density of 1 A g−1. and the cycle life is correspondingly increased. At 5 V DC, the deflection displacement of actuators was 10.12 mm when the doping amount was 0.8 wt%, which was 238.1% higher than when the doping amount was 1.5 wt%. And the output force of actuators was 3.10 mN, which was 147.2% higher than when the doping amount was 0 wt%. At 5 V/0.05 Hz voltage, the peak displacement of the actuator was 2.871 mm, which was 238.1% higher than when the doping amount was 1.5 wt%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T. Xie, Tunable polymer multi-shape memory effect. Nature 464(7286), 267–270 (2010)

    Article  ADS  Google Scholar 

  2. M. Acerce, E.K. Akdogan, M. Chhowalla, Metallic molybdenum disulfide nanosheet-based electrochemical actuators. Nature 549(7672), 370 (2017)

    Article  ADS  Google Scholar 

  3. E. Acome, S.K. Mitchell, T.G. Morrissey, Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science 359(6371), 61–65 (2018)

    Article  ADS  Google Scholar 

  4. E. Akar, Y. Seki, O. Özdemir, Electromechanical characterization of multilayer graphene-reinforced cellulose composite containing 1-ethyl-3-methylimidazolium diethylphosphonate ionic liquid. Sci Eng Compos Mater 24(2), 289–295 (2017)

    Article  Google Scholar 

  5. N. Aravindan, S. Preethi, M.V. Sangaranarayanan, Non-enzymatic selective determination of catechol using copper microparticles modified polypyrrole coated glassy carbon electrodes. J Electrochem Soc 164(6), B274–B284 (2017)

    Article  Google Scholar 

  6. M. Farhan, T. Rudolph, U. Nochel, Extractable free polymer chains enhance actuation performance of crystallizable poly (epsilon-caprolactone) networks and enable self-healing. Polymers 10(3), 255 (2018)

    Article  Google Scholar 

  7. I. Poldsalu, K. Rohtlaid, T.M.G. Nguyen, Thin ink-jet printed trilayer actuators composed of PEDOT: PSS on interpenetrating polymer networks. Sens Actuators B Chem 258, 1072–1079 (2018)

    Article  Google Scholar 

  8. L.J. Wu, M.J. de Andrade, L.K. Saharan, Compact and low-cost humanoid hand powered by nylon artificial muscles. Bioinspiration Biomim 12(2), 026004 (2017)

    Article  ADS  Google Scholar 

  9. F. Wang, Z. Jin, S.H. Zheng, High-fidelity bioelectronic muscular actuator based on porous carboxylate bacterial cellulose membrane. Sens Actuators B Chem 250, 402–411 (2017)

    Article  Google Scholar 

  10. A. Miriyev, K. Stack, H. Lipson, Soft material for soft actuators. Nat Commun 8(1), 596 (2017)

    Article  ADS  Google Scholar 

  11. F.J. Iftikhar, A. Shah, P.G.L. Baker et al., Poly (phenazine 2, 3-diimino (pyrrole-2-yl)) as redox stimulated actuator material for selected organic dyes. J Electrochem Soc 164(14), B785–B791 (2017)

    Article  Google Scholar 

  12. S.J. Kim, O. Kim, M.J. Park, True low-power self-locking soft actuators. Adv Mater 30(12), 1706547 (2018)

    Article  Google Scholar 

  13. M. Acerce, E.K. Akdogan, M. Chhowalla, Metallic molybdenum disulfide nanosheet-based electrochemical actuators. Nature 549(7672), 370 (2017)

    Article  ADS  Google Scholar 

  14. N. Terasawa, K. Asaka, High-performance polymer actuators based on an iridium oxide and vapor-grown carbon nanofibers combining electrostatic double-layer and faradaic capacitor mechanisms. Sens Actuators B Chem 240, 536–542 (2017)

    Article  Google Scholar 

  15. Z.Z. Sun, G. Zhao, W.L. Song, Investigation into electromechanical properties of biocompatible chitosan-based ionic actuator. Exp Mech 58(1), 99–109 (2018)

    Article  Google Scholar 

  16. I.G. Casella, D. Gioia, M. Rutilo, A multi-walled carbon nanotubes/cellulose acetate composite electrode (MWCNT/CA) as sensing probe for the amperometric determination of some catecholamines. Sens Actuators B Chem 255, 3533–3540 (2018)

    Article  Google Scholar 

  17. W.L. Song, L. Yang, Z.Z. Sun, Study on actuation enhancement for ionic-induced IL-cellulose based biocompatible composite actuators by glycerol plasticization treatment method. Cellulose 25(5), 2885–2899 (2018)

    Article  Google Scholar 

  18. T. Zhang, M. Tang, Y. Yao et al., MWCNT interactions with protein: surface-induced changes in protein adsorption and the impact of protein corona on cellular uptake and cytotoxicity. Int J Nanomed 14, 993–1009 (2019)

    Article  Google Scholar 

  19. X. Zhang, X.Y. Yin, J.J. Luo et al., novel hierarchical nitrogen-doped multiwalled carbon nanotubes/cellulose/nanohydroxyapatite nanocomposite as an osteoinductive scaffold for enhancing bone regeneration. ACS Biomater Sci Eng 5(5), 294–307 (2019)

    Google Scholar 

  20. L. Lu, W. Chen, Biocompatible composite actuator: a supramolecular structure consisting of the biopolymer chitosan, carbon nanotubes, and an ionic liquid. Adv Mater 22(33), 3745–3748 (2010)

    Article  Google Scholar 

  21. Y. Liu, C. Lu, S. Twigg et al., Direct observation of ion distributions near electrodes in ionic polymer actuators containing ionic liquids. Sci Rep 3, 973 (2013)

    Article  Google Scholar 

  22. G. Zhao, Z.Z. Sun, J. Wang, Development of biocompatible polymer actuator consisting of biopolymer chitosan, carbon nanotubes, and an ionic liquid. Polym Compos 38(8), 1609–1615 (2017)

    Article  Google Scholar 

  23. K.D. Baik, I.S. Seo, Metallic bipolar plate with a multi-hole structure in the rib regions for polymer electrolyte membrane fuel cells. Appl Energy 212, 333–339 (2018)

    Article  Google Scholar 

  24. H. Duan, Y.X. Yin, X.X. Zeng, In-situ plasticized polymer electrolyte with double-network for flexible solid-state lithium-metal batteries. Energy Storage Mater 10, 85–91 (2018)

    Article  Google Scholar 

  25. V. Vijayalekshmi, D. Khastgir, Chitosan/partially sulfonated poly (vinylidene fluoride) blends as polymer electrolyte membranes for direct methanol fuel cell applications. Cellulose 25(1), 661–681 (2018)

    Article  Google Scholar 

  26. D. Wang, C. Lu, J. Zhao, High energy conversion efficiency conducting polymer actuators based on PEDOT: PSS/MWCNTs composite electrode. RSC Adv 7(50), 31264–31271 (2017)

    Article  Google Scholar 

  27. H. Rasouli, L. Naji, M.G. Hosseini, Electrochemical and electromechanical behavior of Nafion-based soft actuators with PPy/CB/MWCNT nanocomposite electrodes. RSC Adv 7(6), 3190–3203 (2017)

    Article  Google Scholar 

  28. G. Zhao, Z.Z. Sun, J. Wang, Electrochemical properties of a highly biocompatible chitosan polymer actuator based on a different nanocarbon/ionic liquid electrode. Polym Compos 38(11), 2395–2401 (2017)

    Article  Google Scholar 

  29. D.S. Song, H.Y. Cho, B.R. Yoon, Air-operating polypyrrole actuators based on poly (vinylidene fluoride) membranes filled with poly (ethylene oxide) electrolytes. Macromol Res 25(2), 135–140 (2017)

    Article  Google Scholar 

  30. Z.Z. Sun, L. Yang, D. Zhang, High performance, flexible and renewable nano-biocomposite artificial muscle based on cellulose/ionic liquid electrolyte membrane. Sens Actuators B Chem 283, 579–589 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support by China Postdoctoral Science Foundation Funded Project (Grant No. 2018M630330 and No. 2019T120245), Natural Science Foundation of Heilongjiang Province (Grant No. QC2018046), National Science Foundation of China (Grant No. 31470714), and Fundamental Research Funds for the Central Universities (Grant No. 2572017PZ12).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhuangzhi Sun or Wenlong Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 667 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Sun, Z., Li, F. et al. Performance enhancement of cellulose-based biocomposite ionic actuator by doping with MWCNT. Appl. Phys. A 125, 547 (2019). https://doi.org/10.1007/s00339-019-2812-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2812-5

Navigation