Skip to main content

Advertisement

Log in

Comparison of the productivity and ablation efficiency of different laser classes for laser ablation of gold in water and air

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, we compare different laser systems used for the synthesis of nanoparticles. The productivity and ablation efficiency of laser ablation of gold in water and in air are determined for three pulsed laser systems with comparable pulse energy but different pulse duration and repetition rate. All experiments are performed in a fluence range of up to \(20\,\hbox {J}/\hbox {cm}^{2}\). The highest productivity among the considered lasers is found for a high-power picosecond laser, which shows 12 times higher ablation rate for the ablation in air compared to ablation in liquid. Further, we find that the threshold fluence for ablation in air is up to 1.9 times higher than for ablation in water. The highest ablation efficiency, which is defined as an energy specific ablation volume by the ablation rate divided by the laser power, is found for the low power, compact nanosecond laser system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Turkevich, P.C. Stevenson, J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55 (1951)

    Article  Google Scholar 

  2. S.K. Balasubramanian, L. Yang, L.Y.L. Yung, C.N. Ong, W.Y. Ong, L.E. Yu, Characterization, purification, and stability of gold nanoparticles. Biomaterials 31, 9023–9030 (2010)

    Article  Google Scholar 

  3. S. Gu, J. Kaiser, G. Marzun, A. Ott, Y. Lu, M. Ballauff, A. Zaccone, S. Barcikowski, P. Wagener, Ligand-free gold nanoparticles as a reference material for kinetic modelling of catalytic reduction of 4-nitrophenol. Catal. Lett. 145, 1105–1112 (2015)

    Article  Google Scholar 

  4. V. Amendola, L. Litti, M. Meneghetti, LDI-MS assisted by chemical-free gold nanoparticles: enhanced sensitivity and reduced background in the low-mass region. Anal. Chem. 85, 11747–11754 (2013)

    Article  Google Scholar 

  5. S. Petersen, J. Jakobi, S. Barcikowski, In-situ bioconjugation—novel laser based approach to pure nanoparticle-conjugates. Appl. Surf. Sci. 255, 5435–5438 (2009)

    Article  ADS  Google Scholar 

  6. D. Zhang, B. Gökce, S. Barcikowski, Laser synthesis and processing of colloids: fundamentals and applications. Chem. Rev. 117, 3990–4103 (2017)

    Article  Google Scholar 

  7. S. Jendrzej, B. Gökce, M. Epple, S. Barcikowski, How size determines the value of gold—economic aspects of wet chemical and laser-based metal colloid synthesis. Chem. Phys. Phys. Chem. 18, 1012–1019 (2017)

    Article  Google Scholar 

  8. J. Zhang, M. Chaker, D. Ma, Pulsed laser ablation based synthesis of colloidal metal nanoparticles for catalytic applications. J Colloid Interface Sci. 489, 138–149 (2017)

    Article  ADS  Google Scholar 

  9. F. Davodi, E. Mühlhausen, M. Tavakkoli, J. Sainio, H. Jiang, B. Gökce, G. Marzun, T. Kallio, Catalyst support effect on the activity and durability of magnetic nanoparticles: toward design of advanced electrocatalyst for full water splitting. ACS Appl. Mater. Interfaces 10, 31300–31311 (2018)

    Article  Google Scholar 

  10. T. Schmitz, U. Wiedwald, C. Dubs, B. Gökce, Ultrasmall yttrium iron garnet nanoparticles with high coercivity at low temperature synthesized by laser ablation and fragmentation of pressed powders. ChemPhysChem 18, 1125–1132 (2017)

    Article  Google Scholar 

  11. S. Barcikowski, T. Baranowski, Y. Durmus, U. Wiedwald, B. Gökce, Solid solution magnetic FeNi nanostrand-polymer composites by connecting-coarsening assembly. J. Mater. Chem. C 3, 10699–10704 (2015)

    Article  Google Scholar 

  12. V. Amendola, P. Riello, M. Meneghetti, Magnetic nanoparticles of iron carbide, iron oxide, iron@iron oxide, and metal iron synthesized by laser ablation in organic solvents. J. Phys. Chem. C 115, 5140–5146 (2011)

    Article  Google Scholar 

  13. A. Kanitz, J.S. Hoppius, M. Del Mar Sanz, M. Maicas, A. Ostendorf, E.L. Gurevich, Synthesis of magnetic nanoparticles by ultrashort pulsed laser ablation of iron in different liquids. ChemPhysChem 18, 1155–1164 (2017)

    Article  Google Scholar 

  14. S. Jendrzej, L. Gondecki, J. Debus, H. Moldenhauer, P. Tenberge, S. Barcikowski, B. Gökce, Tribological properties of laser-generated hard ceramic particles in a gear drive contact. Appl. Surf. Sci. 467–468, 811–818 (2019)

    Article  ADS  Google Scholar 

  15. C. Doñate-Buendía, F. Frömel, M.B. Wilms, R. Streubel, J. Tenkamp, T. Hupfeld, M. Nachev, E. Gökce, A. Weisheit, S. Barcikowski, F. Walther, J.H. Schleifenbaum, B. Gökce, Oxide dispersion-strengthened alloys generated by laser metal deposition of laser-generated nanoparticle-metal powder composites. Mater. Design 154, 360–369 (2018)

    Article  Google Scholar 

  16. R. Streubel, M.B. Wilms, C. Doñate-Buendía, A. Weisheit, S. Barcikowski, J.H. Schleifenbaum, B. Gökce, Depositing laser-generated nanoparticles on powders for additive manufacturing of oxide dispersed strengthened alloy parts via laser metal deposition. Jpn. J. Appl. Phys. 57, 040,310 (2018)

    Article  Google Scholar 

  17. T. Hupfeld, T. Laumer, T. Stichel, T. Schuffenhauer, J. Heberle, M. Schmidt, S. Barcikowski, B. Gökce, A new approach to coat PA12 powders with laser-generated nanoparticles for selective laser sintering. Procedia CIRP 74, 244–248 (2018)

    Article  Google Scholar 

  18. M.B. Wilms, R. Streubel, F. Frömel, A. Weisheit, J. Tenkamp, F. Walther, S. Barcikowski, J.H. Schleifenbaum, B. Gökce, Laser additive manufacturing of oxide dispersion strengthened steels using laser-generated nanoparticle-metal composite powders. Procedia CIRP 74, 196–200 (2018)

    Article  Google Scholar 

  19. S. Kohsakowski, A. Santagata, M. Dell’Aglio, A. de Giacomo, S. Barcikowski, P. Wagener, B. Gökce, High productive and continuous nanoparticle fabrication by laser ablation of a wire-target in a liquid jet. Appl. Surf. Sci. 403, 487–499 (2017)

    Article  ADS  Google Scholar 

  20. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Femtosecond, picosecond and nanosecond laser ablation of solids. Appl. Phys. A 63, 109–115 (1996)

    Article  ADS  Google Scholar 

  21. N.M. Bulgakova, A.V. Bulgakov, I.M. Bourakov, N.A. Bulgakova, Pulsed laser ablation of solids and critical phenomena. Appl. Surf. Sci. 197–198, 96–99 (2002)

    Article  ADS  Google Scholar 

  22. L.S. Brown, T.W.B. Kibble, Interaction of intense laser beams with electrons. Phys. Rev. 133, A705–A719 (1964)

    Article  ADS  Google Scholar 

  23. J. Furmanski, A.M. Rubenchik, M.D. Shirk, B.C. Stuart, Deterministic processing of alumina with ultrashort laser pulses. J. Appl. Phys. 102, 073,112 (2007)

    Article  Google Scholar 

  24. G. Raciukaitis, M. Brikas, P. Gecys, B. Voisiat, M. Gedvilas, Use of high repetition rate and high power lasers in microfabrication: how to keep the efficiency high? JLMN 4, 186–191 (2009)

    Article  Google Scholar 

  25. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Ablation of metals by ultrashort laser pulses. J. Opt. Soc. Am. B 14, 2716–2722 (1997)

    Article  ADS  Google Scholar 

  26. S. Preuss, A. Demchuk, M. Stuke, Sub-picosecond UV laser ablation of metals. Appl. Phys. A Mater. Sci. Process. 61, 33–37 (1995)

    Article  ADS  Google Scholar 

  27. B. Neuenschwander, B. Jaeggi, M. Schmid, From fs to sub-ns: dependence of the material removal rate on the pulse duration for metals. Phys. Procedia 41, 794–801 (2013)

    Article  ADS  Google Scholar 

  28. N. Patra, K. Akash, S. Shiva, R. Gagrani, H.S.P. Rao, V.R. Anirudh, I.A. Palani, V. Singh, Parametric investigations on the influence of nano-second Nd3+:YAG laser wavelength and fluence in synthesizing NiTi nano-particles using liquid assisted laser ablation technique. Appl. Surf. Sci. 366, 104–111 (2016)

    Article  ADS  Google Scholar 

  29. D. Devaux, R. Fabbro, L. Tollier, E. Bartnicki, Generation of shock waves by laser-induced plasma in confined geometry. J. Appl. Phys. 74, 2268–2273 (1993)

    Article  ADS  Google Scholar 

  30. C.Y. Shih, R. Streubel, J. Heberle, A. Letzel, M.V. Shugaev, C. Wu, M. Schmidt, B. Gökce, S. Barcikowski, L.V. Zhigilei, Two mechanisms of nanoparticle generation in picosecond laser ablation in liquids: the origin of the bimodal size distribution. Nanoscale 10, 6900–6910 (2018)

    Article  Google Scholar 

  31. S.I. Kudryashov, I.N. Saraeva, V.N. Lednev, S.M. Pershin, A.A. Rudenko, A.A. Ionin, Single-shot femtosecond laser ablation of gold surface in air and isopropyl alcohol. Appl. Phys. Lett. 112, 203,101 (2018)

    Article  Google Scholar 

  32. N.A. Inogamov, V.V. Zhakhovskii, V.A. Khokhlov, Dynamics of gold ablation into water. J. Exp. Theor. Phys. 127, 79–106 (2018)

    Article  ADS  Google Scholar 

  33. C.Y. Shih, C. Wu, M.V. Shugaev, L.V. Zhigilei, Atomistic modeling of nanoparticle generation in short pulse laser ablation of thin metal films in water. J. Colloid Interface Sci. 489, 3–17 (2017)

    Article  ADS  Google Scholar 

  34. M. DellAglio, R. Gaudiuso, O. de Pascale, A. de Giacomo, Mechanisms and processes of pulsed laser ablation in liquids during nanoparticle production. Appl. Surf. Sci. 348, 4–9 (2015)

    Article  Google Scholar 

  35. S. Barcikowski, A. Hahn, A.V. Kabashin, B.N. Chichkov, Properties of nanoparticles generated during femtosecond laser machining in air and water. Appl. Phys. A 87, 47–55 (2007)

    Article  ADS  Google Scholar 

  36. S.V. Starinskiy, Y.G. Shukhov, A.V. Bulgakov, Laser-induced damage thresholds of gold, silver and their alloys in air and water. Appl. Surf. Sci. 396, 1765–1774 (2017)

    Article  ADS  Google Scholar 

  37. M.E. Shaheen, J.E. Gagnon, B.J. Fryer, Femtosecond laser ablation of brass in air and liquid media. J. Appl. Phys. 113, 213,106 (2013)

    Article  Google Scholar 

  38. C.L. Sajti, R. Sattari, B. Chichkov, S. Barcikowski, Ablation efficiency of α-Al2O3 in liquid phase and ambient air by nanosecond laser irradiation. Appl. Phys. A Mater. Sci. Process. 100, 203–206 (2010)

    Article  ADS  Google Scholar 

  39. P.A. Danilov, A.A. Ionin, S.I. Kudryashov, A.A. Rudenko, I.N. Saraeva, D.A. Zayarny, Non-monotonic variation of Au nanoparticle yield during femtosecond/picosecond laser ablation in water. Laser Phys. Lett. 14, 056,001 (2017)

    Article  Google Scholar 

  40. I.N. Saraeva, S.I. Kudryashov, A.A. Rudenko, M.I. Zhilnikova, D.S. Ivanov, D.A. Zayarny, A.V. Simakin, A.A. Ionin, M.E. Garcia, Effect of fs/ps laser pulsewidth on ablation of metals and silicon in air and liquids, and on their nanoparticle yields. Appl. Surf. Sci. 470, 1018–1034 (2019)

    Article  ADS  Google Scholar 

  41. R. Streubel, S. Barcikowski, B. Gökce, Continuous multigram nanoparticle synthesis by high-power, high-repetition-rate ultrafast laser ablation in liquids. Opt. Lett. 41, 1486–1489 (2016)

    Article  ADS  Google Scholar 

  42. D.D. Evanoff, G. Chumanov, Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem 6, 1221–1231 (2005)

    Article  Google Scholar 

  43. R. Streubel, G. Bendt, B. Gökce, Pilot-scale synthesis of metal nanoparticles by high-speed pulsed laser ablation in liquids. Nanotechnology 27, 1–9 (2016)

    Article  Google Scholar 

  44. A.Y. Vorobyev, C. Guo, Enhanced absorptance of gold following multipulse femtosecond laser ablation. Phys. Rev. B 72, 1496 (2005)

    Article  Google Scholar 

  45. S. Reich, A. Letzel, B. Gökce, A. Menzel, S. Barcikowski, A. Plech, Incubation effect of pre-irradiation on bubble formation and ablation in laser ablation in liquids. ChemPhysChem 20, 1036–1043 (2019)

    Article  Google Scholar 

  46. P.B. Johnson, R.W. Christy, Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972). https://doi.org/10.1103/PhysRevB.6.4370

    Article  ADS  Google Scholar 

  47. G.M. Hale, M.R. Querry, Optical constants of water in the 200-nm to 200-microm wavelength region. Appl. Opt. 12, 555–563 (1973)

    Article  ADS  Google Scholar 

  48. P.E. Ciddor, Refractive index of air: new equations for the visible and near infrared. Appl. Opt. 35, 1566–1573 (1996)

    Article  ADS  Google Scholar 

  49. J. Hohlfeld, S.S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, E. Matthias, Electron and lattice dynamics following optical excitation of metals. Chem. Phys. 251, 237–258 (2000)

    Article  Google Scholar 

  50. R.R. Letfullin, T.F. George, G.C. Duree, B.M. Bollinger, Ultrashort laser pulse heating of nanoparticles: comparison of theoretical approaches. Adv. Opt. Technol. 2008, 1–8 (2008)

    Article  Google Scholar 

  51. S.S. Wellershoff, J. Hohlfeld, J. Güdde, E. Matthias, The role of electron–phonon coupling in femtosecond laser damage of metals. Appl. Phys. A Mater. Sci. Process. 69, S99–S107 (1999)

    Google Scholar 

  52. K.M. McPeak, S.V. Jayanti, S.J.P. Kress, S. Meyer, S. Iotti, A. Rossinelli, D.J. Norris, Plasmonic films can easily be better: rules and recipes. ACS Photonics 2, 326–333 (2015)

    Article  Google Scholar 

  53. S. Babar, J.H. Weaver, Optical constants of Cu, Ag, and Au revisited. Appl. Opt. 54, 477 (2015)

    Article  ADS  Google Scholar 

  54. E.G. Gamaly, A.V. Rode, B. Luther-Davies, V.T. Tikhonchuk, Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics. Phys. Plasmas 9, 949–957 (2002)

    Article  ADS  Google Scholar 

  55. B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, Optical ablation by high-power short-pulse lasers. J. Opt. Soc. Am. B 13, 459 (1996)

    Article  ADS  Google Scholar 

  56. D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, Laser-induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs. Appl. Phys. Lett. 64, 3071–3073 (1994)

    Article  ADS  Google Scholar 

  57. G. Yang, Laser ablation in liquids: applications in the synthesis of nanocrystals. Progress Mater. Sci. 52, 648–698 (2007)

    Article  Google Scholar 

  58. P. Peyer, L. Berthe, R. Fabbro, A. Sollier, Experimental determination by PVDF and EMV techniques of shock amplitudes induced by 0.6–3 ns laser pulses in a confined regime with water. J. Phys. D Appl. Phys. 33, 498–503 (2000)

    Article  ADS  Google Scholar 

  59. K.K. Kim, M. Roy, H. Kwon, J.K. Song, S.M. Park, Laser ablation dynamics in liquid phase: the effects of magnetic field and electrolyte. J. Appl. Phys. 117, 074,302 (2015)

    Article  Google Scholar 

  60. X. Liu, M. Atwater, J. Wang, Q. Huo, Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf. B Biointerfaces 58, 3–7 (2007)

    Article  Google Scholar 

  61. M.R. Kalus, N. Baersch, R. Streubel, E. Gökce, S. Barcikowski, B. Gökce, How persistent microbubbles shield nanoparticle productivity in laser synthesis of colloids—quantification of their volume, dwell dynamics, and gas composition. Phys. Chem. Chem. Phys. 19, 7112–7123 (2017)

    Article  Google Scholar 

  62. S.I. Kudryashov, A.A. Nastulyavichus, A.K. Ivanova, N.A. Smirnov, R.A. Khmelnitskiy, A.A. Rudenko, I.N. Saraeva, E.R. Tolordava, A.Yu. Kharin, I.N. Zavestovskaya, Y.M. Romanova, D.A. Zayarny, A.A. Ionin, High-throughput laser generation of Si-nanoparticle based surface coatings for antibacterial applications. Appl. Surf. Sci. 470, 825–831 (2019)

    Article  ADS  Google Scholar 

  63. B. Jaeggi, S. Remund, R. Streubel, B. Gökce, S. Barcikowski, B. Neuenschwander, Laser micromachining of metals with ultra-short pulses: factors limiting the scale-up process. J. Laser Micro/Nanoeng. 12, 3 (2017)

    Google Scholar 

  64. G.X. Chen, M.H. Hong, T.C. Chong, H.I. Elim, G.H. Ma, W. Ji, Preparation of carbon nanoparticles with strong optical limiting properties by laser ablation in water. J. Appl. Phys. 95, 1455–1459 (2004)

    Article  ADS  Google Scholar 

  65. C. Wu, M.S. Christensen, J.M. Savolainen, P. Balling, L.V. Zhigilei, Generation of subsurface voids and a nanocrystalline surface layer in femtosecond laser irradiation of a single-crystal Ag target. Phys. Rev. B 91, 375 (2015)

    Google Scholar 

  66. B. Jaeggi, B. Neuenschwander, M. Schmid, M. Muralt, J. Zuercher, U. Hunziker, Influence of the pulse duration in the ps-regime on the ablation efficiency of metals. Phys. Procedia 12, 164–171 (2011)

    Article  ADS  Google Scholar 

  67. R. Sattari, Laser-based fragmentation of microparticles for nanoparticle generation. J. Laser Micro/Nanoeng. 3, 100–105 (2008)

    Article  Google Scholar 

  68. P.K. Baruah, A.K. Sharma, A. Khare, Effective control of particle size, surface plasmon resonance and stoichiometry of Cu@CuxO nanoparticles synthesized by laser ablation of Cu in distilled water. Opt. Laser Technol. 108, 574–582 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the BMWi via ZIM AIF project under Grant no. ZF4044504RE6 and the Deutsche Forschungsgemeinschaft (DFG) [grant numbers GO 2566/7-1, HU 1893/6-1]. The authors gratefully thank the CryLaS GmbH in Berlin for provision of the DSS1064-Q4 laser, Ruksan Nadarajah for providing the SEM images and Prof. L. Zhigilei for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilal Gökce.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dittrich, S., Streubel, R., McDonnell, C. et al. Comparison of the productivity and ablation efficiency of different laser classes for laser ablation of gold in water and air. Appl. Phys. A 125, 432 (2019). https://doi.org/10.1007/s00339-019-2704-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2704-8

Navigation