Skip to main content
Log in

Anti-reflective and anticorrosive properties of laser-etched titanium sheet in different media

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effects of femtosecond laser etching in different media (air, deionized water, and anhydrous ethanol) on the morphology, anti-reflection, and anticorrosion of titanium sheet surface were studied. Ripples, ripples overlapped by grooves and micro-bumps, were, respectively, obtained by laser etching in the air, ethanol, and water. Compared to the untreated titanium, on the surface of titanium sheet, Ti6O and Ti3O are obtained by laser etching in water, but Ti6O was obtained by laser etching in ethanol. The reflectivity of laser-etched Ti surface in ethanol or water is reduced to less than 17% within the 200 nm–1200 nm spectral range. The etched surface in ethanol shows better reflectivity in the ultraviolet–visible range with a minimum value of 3%, and the etched surface in water exhibits better anti-reflection performance in the near-infrared spectral range 800 nm–1200 nm with the lowest value of 7.6%. The differences of anti-reflection are ascribed to the competition between the light trapping effects and the effective medium effect. Furthermore, the anticorrosion property of titanium is also improved by laser etching in water or ethanol. Ecorr of the laser-etched samples is about 0.05 v higher than that of untreated Ti, while Icorr is reduced by about 0.5 order of magnitude. The better anticorrosion is mainly due to the improved hydrophobicity in 3.5% NaCl solution. The improvement of these properties allows titanium to have more important application value in solar collector panels, optoelectronic devices, thermal photovoltaic power generation, and so on.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Long, Z. Cao, C. Lin, C. Zhou, Appl. Surf. Sci. 464, 412–421 (2019)

    Article  ADS  Google Scholar 

  2. P. Fan, B. Bai, M. Zhong, H. Zhang, J. Long, J. Han, W. Wang, G. Jin, ACS Nano 11, 7401–7408 (2017)

    Article  Google Scholar 

  3. C. Guo, T. Sun, F. Cao, Q. Liu, Z. Ren, Light Sci. Appl. 3, e161 (2014)

    Article  Google Scholar 

  4. P. Fan, M. Zhong, Infrared Laser Eng. 45, 6 (2016)

    Google Scholar 

  5. R. Gattass, E. Mazur, Nat. Photonics 2, 219–225 (2008)

    Article  ADS  Google Scholar 

  6. H.K. Raut, G.V. Anand, A.S. Nair, S. Ramakrishna, Energ. Environ. Sci. 4, 3779 (2011)

    Google Scholar 

  7. V. Kara, H. Kizil, Opt. Laser Eng. 50, 140–147 (2012)

    Article  Google Scholar 

  8. B.K. Nayak, M.C. Gupta, K.W. Kolasinski, Appl. Phys. A Mater. 90, 399–402 (2008)

    Article  ADS  Google Scholar 

  9. M. Tsukamoto, T. Kayahara, H. Nakano, M. Hashida, M. Katto, M. Fujita, M. Tanaka, N. Abe, J. Phys. 59, 666–669 (2007)

    Google Scholar 

  10. A.Y. Vorobyev, C. Guo, J. Appl. Phys. 104, 101 (2008)

    Google Scholar 

  11. A.Y. Vorobyev, A.N. Topkov, O.V. Gurin, V.A. Svich, C. Guo, Appl. Phys. Lett. 95, 121106 (2009)

    Article  ADS  Google Scholar 

  12. P. Fan, B. Bai, M. Zhong, et al, ACS. Nano. 11(7), 7401–7408 (2017)

    Article  Google Scholar 

  13. K. Song, I. Kim, S. Bang, J. Jung, Y. Nam, Appl. Surf. Sci. 467, 1046–1052 (2019)

    Article  ADS  Google Scholar 

  14. Z. Xu, U. Eduok, J. Szpunar, Surf. Coat. Tech. 357, 691 (2019)

    Article  Google Scholar 

  15. J. Huang, K. Kuo, G. Yu, Surf. Coat. Tech. 358, 308 (2019)

    Article  Google Scholar 

  16. J.Z. Lu, H. Qi, K.Y. Luo, M. Luo, X.N. Cheng, Corros. Sci. 80, 53–59 (2014)

    Article  ADS  Google Scholar 

  17. M. Huang, F. Zhao, Y. Cheng, N. Xu, Z. Xu, ACS Nano 3, 4062–4070 (2009)

    Article  Google Scholar 

  18. S. Bashir, M.S. Rafique, C.S. Nathala, A. Ajami, W. Husinsky, Phys. B 513, 48–57 (2017)

    Article  ADS  Google Scholar 

  19. C. Zhang, J. Yao, C. Li, Q. Dai, S. Lan, V. Trofimov, T. Lysak, Opt. Express 4439, 21 (2013)

    Google Scholar 

  20. M. Tsukamoto, T. Kayahara, H. Nakano, M. Hashida, M. Katto, M. Fujita, M. Tanaka, N. Abe, JPCS 59, 666–669 (2007)

    Google Scholar 

  21. J. Lu, R.Q. Xu, X. Chen, Z. Shen, J. of Appl. Phys. 95, 3890–3894 (2004)

    Article  ADS  Google Scholar 

  22. S. Bashir, H. Vaheed, K. Mahmood, Appl. Phys. A 110, 389–395 (2013)

    Article  ADS  Google Scholar 

  23. M.E. Shaheen, J.E. Gagnon, B.J. Fryer, J. Appl. Phys. 113, 296 (2013)

    Article  Google Scholar 

  24. S. Bashir, M.S. Rafique, C.S. Nathala, W. Husinsky, Appl. Phys. A 114, 243–251 (2014)

    Article  ADS  Google Scholar 

  25. V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys. 11, 3805 (2009)

    Article  Google Scholar 

  26. G.W. Yang, Prog. Mater Sci. 52, 648 (2007)

    Article  Google Scholar 

  27. N. Ali, S. Bashir, Umm-i-Kalsoom, N. Begum, M.S. Rafique, W. Husinsky, Appl. Surf. Sci. 405, 298-307 (2017)

  28. H. Huang, L. Yang, S. Bai, J. Liu, Appl. Opt. 54, 324–333 (2015)

    Article  ADS  Google Scholar 

  29. H.K. Raut, V.A. Ganesh, A.S. Nair, S. Ramakrishna, Energ. Environ. Sci. 4, 3779–3804 (2011)

    Google Scholar 

  30. B.K. Nayak, M.C. Gupta, Opt. Laser. Eng. 48, 940–949 (2010)

    Article  Google Scholar 

  31. P. Fan, B. Bai, J. Long, D. Jiang, G. Jin, H. Zhang, M. Zhong, Nano Lett. 15, 5988–5994 (2015)

    Article  ADS  Google Scholar 

  32. T. Fu, Z. Zhan, L. Zhang, Y. Yang, Z. Liu, J. Liu, L. Li, X. Yu, Surf. Coat. Technol. 280, 129–135 (2015)

    Article  Google Scholar 

  33. B. Wu, M. Zhou, J. Li, X. Ye, G. Li, L. Cai, Appl. Surf. Sci. 256, 61–66 (2009)

    Article  ADS  Google Scholar 

  34. E. Fadeeva, V.K. Truong, M. Stiesch, B.N. Chichkov, R.J. Crawford, J. Wang, E.P. Ivanova, Langmuir 27, 3012–3019 (2011)

    Article  Google Scholar 

  35. K. Sun, H. Yang, W. Xue, A. He, D. Zhu, W. Liu, K. Adeyemi, Y. Cao, Appl. Surf. Sci. 436, 263–267 (2018)

    Article  ADS  Google Scholar 

  36. P. Fan, B. Bai, M. Zhong, H. Zhang, J. Long, J. Han, W. Wang, G. Jin, ACS Nano 11, 7401–7408 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

Thanks for the experimental conditions provided by the laboratory of ultrafast photonics of Shanghai University. Thanks for the financial support from the National Natural Science Foundation of China (Grant Nos. 61205128, 60908007, 11774220), the Research Foundation for Advanced Talents of Jiangsu University (No. 09JDG022) and Shanghai Municipal Natural Science Foundation (No. 13ZR1414800).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Song, J. & Dai, Y. Anti-reflective and anticorrosive properties of laser-etched titanium sheet in different media. Appl. Phys. A 125, 343 (2019). https://doi.org/10.1007/s00339-019-2639-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2639-0

Navigation