Skip to main content
Log in

Analysis of dielectric and magnetic phase transitions in Yb(Fe0.5Cr0.5)O3 bulk perovskite

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A comprehensive investigation of dielectric and magnetic phase transitions in Yb(Fe0.5Cr0.5)O3 bulk ceramics has been presented. The co-existence of orthorhombic phase (Pbnm) along with minor hexagonal (P63cm) phase is detected through Rietveld refinement technique, whereas the presence of Fe3+/Fe2+ and Cr3+/Cr2+ species is also encountered under XPS study. The dielectric broad-band spectroscopic study (5–500 K) reveals that two dielectric transition peaks: (1) at 370 K, first order ferroelectric transition for induced local non-centrosymmetry, and (2) at 462 K, diffuse like relaxor transition because of formation of polar nano-regions and, Schottky barriers at sample-electrode interface, respectively. The complex impedance spectroscopic study exhibits the non-Debye type dielectric relaxation phenomena at lower temperatures, while at high temperatures, oxygen ion vacancies are found to contribute the conduction progression. Furthermore, dc-magnetization plot in FC-ZFC mode detects the strong interactions between Cr3+/Fe3+sublattices also with Yb3+ ions and Yb3+–Yb3+ ions. This results into an antiferromagnetic ordering at TN ~271 K for Cr3+–Cr3+/Fe3+–Fe3+ or Cr3+–Fe3+ spins followed by weak ferromagnetic ordering at 41 K for the occurrence of progressive spin reorientation and further at 11.2 K due to onset interactions of ferromagnetic Cr3+/Fe3+ sub-lattices with paramagnetic Yb3+ ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Schmid, Multi-ferroic Magnetoelectrics. Ferroelectrics 162, 317–338 (1994)

    Article  Google Scholar 

  2. C.-W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008)

    Article  ADS  Google Scholar 

  3. N.A. Spaldin, M. Fiebig, Materials science. The renaissance of magnetoelectric multiferroics. Science 309(5733), 391–392 (2005)

    Article  Google Scholar 

  4. H. Taguchi, M. Nagao, Y.J. Takeda, Relationship between the electrical properties and crystal structure of (La1−xNdx)CrO3 (0 ≤ x ≤ 1.0). Sol. Stat. Chem. 114, 236–241 (1995)

    Article  ADS  Google Scholar 

  5. A. Jaiswal, R. Das, K. Vivekanand, T. Maity, P.M. Abraham, S. Adyanthaya, P. Poddar, Magnetic and dielectric properties and Raman spectroscopy of GdCrO3 nanoparticles. J. Appl. Phys. 107, 013912 (2010)

    Article  ADS  Google Scholar 

  6. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003)

    Article  ADS  Google Scholar 

  7. C. Ederer, N.A. Spaldin, Magnetoelectrics: A new route to magnetic ferroelectrics. Nat. Mater 3, 849–851 (2004)

    Article  ADS  Google Scholar 

  8. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nat. Lond. 442, 759–765 (2006)

    Article  ADS  Google Scholar 

  9. M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D: Appl Phys 38, R123–R152 (2005)

    Article  ADS  Google Scholar 

  10. L.T. Tsymbal, Y.B. Bazaliy, V.N. Derkachenkob, V.I. Kamenev, G.N. Kakazei, F.J. Palomares, P. Wigen, E, Magnetic and structural properties of spin-reorientation transitions in orthoferrites. J. Appl. Phys. 101, 123919 (2007)

    Article  ADS  Google Scholar 

  11. B. Tiwari, A. Dixit, R. Naik, G. Lawes, M.S.R. Rao, Dielectric and optical phonon anomalies near antiferromagnetic ordering in LaCrO3: a possible near room temperature magnetodielectric system. Appl. Phys. Lett. 103, 152906 (2013)

    Article  ADS  Google Scholar 

  12. Y. Su, J. Zhang, Z. Feng, L. Li, B. Li, Y. Zhou, Z. Chen, S. Cao, Magnetization reversal and Yb3+/Cr3+ spin ordering at low temperature for perovskite YbCrO3 chromites. J. Appl. Phys. 108, 013905 (2010)

    Article  ADS  Google Scholar 

  13. T. Yamaguchi, K. Tsushima, Magnetic symmetry of rare-earth orthochromites and orthoferrites. Phys. Rev. B 8, 5187–5198 (1973)

    Article  ADS  Google Scholar 

  14. S. Washimiya, T. Yamaguchi, Exciton absorption lines during spin reorientation in antiferromagnetic YCrO3,. J. Phys. Soc. Jpn. 38, 1302 (1975)

    Article  ADS  Google Scholar 

  15. Y. Sharma, S. Sahoo, W. Perez, S. Mukherjee, R. Gupta, A. Garg, R. Chatterjee, R.S. Katiyar, Phonons and magnetic excitation correlations in weak ferromagnetic YCrO3. J. Appl. Phys. 115, 183907 (2014)

    Article  ADS  Google Scholar 

  16. V.G. Nair, A. Das, V. Subramanian, P.N. Santhosh, Magnetic structure and magnetodielectric effect of YFe0.5Cr0.5O3. J. Appl. Phys. 113, 213907 (2013)

    Article  ADS  Google Scholar 

  17. L.H. Yin, W.H. Song, X.L. Jiao, W.B. Wu, L.J. Li, W. Tang, X.B. Zhu, Z.R. Yang, J.M. Dai, R.L. Zhang, Y.P. Sun, A study of the magnetic and dielectric properties of YFe0.5Cr0.5O3,. Sol. Stat. Commun. 150, 1074 (2010)

    Article  ADS  Google Scholar 

  18. J. Kanamori, Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Sol 10, 87 (1959)

    Article  ADS  Google Scholar 

  19. J.B. Goodenough, Theory of the role of covalence in the perovskite-type manganites [La, M(II)] MnO3. Phys. Rev. 100, 564 (1955)

    Article  ADS  Google Scholar 

  20. A. Dahmani, M. Taibi, M. Nogues, J. Aride, E. Loudghiri, A. Belayachi, Magnetic properties of the perovskite compounds YFe1−xCrxO3 (0.5 ≤ x ≤ 1). Mater. Chem. Phys. 77, 912–917 (2003)

    Article  Google Scholar 

  21. M.C. Weber, J. Kreisel, P.A. Thomas, M. Newton, K. Sardar, R.I. Walton, Phonon Raman scattering of RCrO3 perovskites (R = Y, La, Pr, Sm, Gd, Dy, Ho, Yb, Lu. Phys. Rev. B 85, 054303 (2012)

    Article  ADS  Google Scholar 

  22. Y.P. Sun, Colossal magnetodielectric effect and spin flop in magnetoelectric Co4Nb2O9 crystal. Appl. Phys. Lett. 109, 032905 (2016) and

    Article  ADS  Google Scholar 

  23. G.-L. Tan, H.-H. Sheng, Multiferroism and colossal magneto-capacitance effect of La0.2Pb0.7Fe12O19 ceramics. Acta Materialia. 121, 144–151 (2016)

    Article  Google Scholar 

  24. S. Kulkarni, Dynamics of electron density, spin-phonon coupling, and dielectric properties of SmFeO3 nanoparticles at the spin-reorientation temperature: Role of exchange striction. Phys. Rev. B 93, 174117 (2016) and

    Article  ADS  Google Scholar 

  25. V.D. Nithya, R.J. Immanuel, S.T. Senthilkumar, C. Sanjeeviraja, I. Perelshtein, D. Zitoun, R.K. Selvan, Studies on the structural, electrical and magnetic properties of LaCrO3, LaCr0.5Cu0.5O3 and LaCr0.5Fe0.5O3 by sol–gel method. Mater. Res. Bull. 47, 1861–1868 (2012)

    Article  Google Scholar 

  26. A.M. Kadomtseva, A.S. Mskovin, I.N. Bostrem, B.M. Wanklyn, N.A. Khafizova, Sov. Phys. JETP 45, 1202 (1977)

    ADS  Google Scholar 

  27. L.H. Yin, Y. Lin, S.G. Tan, B.C. Zhao, J.M. Dai, W.H. Song, Y.P. Sun, Multiple temperature-induced magnetization reversals in SmCr1−xFexO3 system. Mat. Res. Bull. 48, 4016–4021 (2013)

    Article  Google Scholar 

  28. K. Vijayanandhini, C.H. Simon, V. Pralong, Y. Bréard, V. Caignaert, B. Raveau, P. Mandal, A. Sundaresan, C.N.R. Rao, Zero magnetization in a disordered (La1−x/2Bix/2)(Fe0.5Cr0.5)O3 uncompensated weak ferromagnet. J. Phys. Condens. Matter 21, 486002 (2009)

    Article  Google Scholar 

  29. Y. Sharma, P. Misra, D.G.B. Diestra, R. Chatterjee, R.S. Katiyar, Room temperature weak multiferroism and magnetodielectric effect in highly oriented (Y0.9Bi0.1)(Fe0.5Cr0.5)O3 thin films. Mat. Res. Bull. 68, 49–53 (2015)

    Article  Google Scholar 

  30. L.H. Yin, J. Yang, R.R. Zhang, J.M. Dai, W.H. Song, Y.P. Sun, Multiferroicity and magnetoelectric coupling enhanced large magnetocaloric effect in DyFe0.5Cr0.5O3,. Appl. Phys. Lett. 104, 032904 (2014)

    Article  ADS  Google Scholar 

  31. V.G. Nair, L. Pal, V. Subramaniam, P.N. Santosh, Structural, magnetic, and magnetodielectric studies of metamagnetic DyFe0.5Cr0.5O3,. J.App. Phys. 115, 17D728 (2014)

    Article  Google Scholar 

  32. Yuan L, Huang K, Hou C, Feng W, Wang S, Zhou C, Feng S, Hydrothermal synthesis and magnetic properties of REFe0.5Cr0.5O3 (RE = La, Tb, Ho, Er, Yb, Lu, and Y) perovskite. New J. Chem. 38, 1168–1172 (2014)

    Article  Google Scholar 

  33. T. Patri, P. Justin, K. Prabahar, A. Ghosh, Raman and dielectric spectroscopic analysis of magnetic phase transition in Y(Fe0.5Cr0.5)O3 multiferroic ceramics. Ceram. Int. 42, 13834–13840 (2016)

    Article  Google Scholar 

  34. T. Nishimura, S. Hosokawa, Y. Masuda, K. Wada, M. Inoue, Synthesis of metastable rare-earth–iron mixed oxide with the hexagonal crystal structure J. Solid State Chem. 197, 402–407 (2013)

    Article  ADS  Google Scholar 

  35. T. Patri, S.K. Mandal, A. Chandra, Effect of oxygen annealing on the multiferroic properties of Ca2+ doped BiFeO3 nanoceramics. J. Appl. Phys. 116, 244105 (2014)

    Article  ADS  Google Scholar 

  36. T. Higuchi, W. Sakamoto, N. Itoh, T. Shimura, T. Hattori, T. Yogo, Valence state of Mn-doped BiFeO3-BaTiO3 ceramics probed by soft X-ray absorption spectroscopy. Appl. Phys. Express 1, 011502 (2008)

    Article  ADS  Google Scholar 

  37. R.P. Maiti, S. Dutta, M.K. Mitra, D. Chakravorty, Large magnetodielectric effect in nanocrystalline double perovskite Y2FeCrO6. J. Phys. D: Appl. Phys. 46, 415303 (2013)

    Article  Google Scholar 

  38. S.I. Shupack, The chemistry of chromium and some resulting analytical problems. Environ Health Perspect. 92, 7–11 (1991)

    Article  Google Scholar 

  39. Y. Sharma, P. Misra, R.S. Katiyar, Unipolar resistive switching behavior of amorphous YCrO3 films for nonvolatile memory applications. J. Appl. Phys. 116, 084505 (2014)

    Article  ADS  Google Scholar 

  40. Z. Quan, H. Hu, S. Xu, W. Liu, G. Fang, M. Li, X. Zhao, Surface chemical bonding states and ferroelectricity of Ce-doped BiFeO3 thin films prepared by sol–gel process. J. Sol-Gel. Sci. Technol. 48, 261–266 (2008)

    Article  Google Scholar 

  41. Y. Li, T. Sritharan, S. Zhang, X. He, Y. Liu, T. Chen, Multiferroic properties of sputtered BiFeO3 thin films. Appl. Phys. Lett. 92, 132908 (2008)

    Article  ADS  Google Scholar 

  42. Q. Ke, A. Kumar, X. Lou, K. Zeng, J. Wang, Oxygen-vacancy-mediated negative differential resistance in La and Mg co-substituted BiFeO3 thin film. J. Appl. Phys. 110, 124102 (2011)

    Article  ADS  Google Scholar 

  43. Q. Ke, X. Lou, Y. Wang, J. Wang, Oxygen-vacancy-related relaxation and scaling behaviors of Bi0.9La0.1Fe0.98Mg0.02O3 ferroelectric thin films. Phys. Rev. B 82, 024102 (2010)

    Article  ADS  Google Scholar 

  44. M.S.V. Kumar, K. Kuribayashi, K. Kitazono, Effect of oxygen partial pressure on the formation of metastable phases from an under cooled YbFeO3 melt using an aerodynamic levitator. J. Am. Ceram. Soc. 92(4), 903–910 (2009)

    Article  Google Scholar 

  45. M. Shang, C. Zhang, T. Zhang, L. Yuan, L. Ge, H. Yuan, S. Feng, The multiferroic perovskite YFeO3, Appl. Phys. Lett. 102, 062903 (2013)

    Google Scholar 

  46. Y. Qin, X.M. Chen, X.Q. Liu, Dielectric, Ferroelectric and Magnetic Properties of Mn-Doped LuFeO3 Ceramics. J. Appl. Phys. 113, 044113 (2013)

    Article  ADS  Google Scholar 

  47. C.R. Serrao, A.K. Kundu, S.B. Krupanidhi, U.V. Waghmare, C.N.R. Rao, Biferroic YCrO3,. Phys. Rev. B 72, R220201; (2005)

    Article  Google Scholar 

  48. J.R. Sahu, C.R. Serrao, N. Ray, U.V. Waghmare, C.N.R. Rao, Rare earth chromites: a new family of multiferroics. J. Mater. Chem. 17, 42–44 (2007)

    Article  Google Scholar 

  49. H. Iida, T. Koizumi, Y. Uesu, Physical properties of new multiferroic hexagonal YbFeO3 thin film. Phase Trans. 84, 747–752 (2011)

    Article  Google Scholar 

  50. Y.K. Jeong, J.-H. Lee, S.-J. Ahn, S.-W. Song, H.M. Jang, H. Choi, J.F. Scott, Structurally tailored hexagonal ferroelectricity and multiferroism in epitaxial YbFeO3 thin-film heterostructures. J. Am. Chem. Soc. 134, 1450 (2012)

    Article  Google Scholar 

  51. P. Lunkenheimer, S. Krohns, S. Riegg, S.G. Ebbinghaus, A. Reller, A. Loidl, Special topics, colossal dielectric constants in transition-metal oxides. Eur. Phys. J. 180, 61–89 (2010)

    Google Scholar 

  52. Z. Kukula, E. Tomaszewicz, S. Mazur, T. Gron´, H. Duda, S. Pawlus, S.M. Kaczmarek, H. Fuks, T. Mydlarz, (2012) Dielectric and magnetic permitivities of three new ceramic tungstates MPr2W2O10 (M = Cd, Co, Mn). Philos. Mag. 92 (33): 4167–4181

    Article  ADS  Google Scholar 

  53. A.A. Bokov, Z.G. Ye, Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 41, 31–52 (2006)

    Article  ADS  Google Scholar 

  54. L.E. Cross, Relaxor ferroelectrics. Ferroelectrics 76, 241–267 (1987)

    Article  Google Scholar 

  55. S. Satapathy, M.K. Singh, P. Pandit, P.K. Gupta, Relaxor ferroelectric behavior of BaMnO3 (2H) at room temperature. Appl. Phys. Lett. 100, 042904 (2012)

    Article  ADS  Google Scholar 

  56. J.-R. Cheng, N. Li, L.E. Cross, Structural and dielectric properties of Ga-modified BiFeO3-PbTiO3 crystalline solutions. J. Appl. Phys. 94, 5153 (2003)

    Article  ADS  Google Scholar 

  57. M. Li, D.C. Sinclair, A.R. West, Extrinsic origins of the apparent relaxorlike behavior in CaCu3Ti4O12 ceramics at high temperatures: a cautionary tale. J. Appl. Phys. 109, 084106 (2011)

    Article  ADS  Google Scholar 

  58. N. Kumar, A. Ghosh, R.N.P. Choudhary, Electrical behavior of Pb(Zr0.52Ti0.48)0.5(Fe0.5Nb0.5)0.5O3 ceramics. Mater. Chem. Phys. 130, 381–386 (2011)

    Article  Google Scholar 

  59. D.K. Pradhan, V.S. Puli, S.N. Tripathy, J.F. Scott, R.S. Katiyar, Room temperature multiferroic properties of Pb(Fe0.5Nb0.5)O3-Co0.65Zn0.35Fe2O4 composites. J. Appl. Phys. 114, 234106 (2013)

    Article  ADS  Google Scholar 

  60. K.C. Kao, Dielectric phenomena in solids (Elsevier Academic Press, London, 2004)

    Google Scholar 

  61. N. Zhong, S. Okamura, K. Uchiyama, T. Shiosaki, Single-ionized-oxygen-vacancy-related dielectric relaxation in Bi3.25La0.75Ti3O12 ferroelectric films. Appl. Phys. Lett. 87, 252901 (2005)

    Article  ADS  Google Scholar 

  62. A.Q. Jiang, G.H. Li, L.D. Zhang, Dielectric study in nanocrystalline Bi4Ti3O12 prepared by chemical co-precipitation. J. Appl. Phys. 83, 4878 (1998)

    Article  ADS  Google Scholar 

  63. J.R. Macdonald, W.B. Johnson, Impedance Spectroscopy (Wiley, New York, 2005, pp 1–26)

    Book  Google Scholar 

  64. R. Schmidt, W. Eerenstein, T. Winiecki, F.D. Morrison, P.A. Midgley, Impedance spectroscopy of epitaxial multiferroic thin films. Phys. Rev. B 75, 245111 (2007)

    Article  ADS  Google Scholar 

  65. T. Patri, N. Kumar, M. Pastor, A.C. Pandey, R.N.P. Choudhary, Diffused phase transitions in Pb(Zr0. 65Ti0. 35) O3-Pb (Fe2/3W1/3)O3 multiferroics. J. Appl. Phys. 117, 074104 (2015)

    Article  Google Scholar 

  66. T. Patri, A. Chandra, Grain and grain boundary effects in Ca2+ doped BiFeO3 multiferroic ceramics. Phys. Stat. Sol. B. 249, 1639 (2012)

    Article  ADS  Google Scholar 

  67. D.K. Pradhan, R.N.P. Choudhary, C. Rinaldi, R.S. Katiyar, Effect of Mn substitution on electrical and magnetic properties of Bi0.9La0.1FeO3. J. Appl. Phys. 106, 024102 (2009)

    Article  ADS  Google Scholar 

  68. A.K. Jonscher, Dielectric relaxation in solids. J. Phys. D: Appl. Phys. 32, R57–R70 (1999)

    Article  ADS  Google Scholar 

  69. D.K. Pradhan, P. Misra, S.V. Puli, S. Sahoo, D.K. Pradhan, R.S. Katiyar, Studies on structural, dielectric, and transport properties of Ni0.65Zn0.35Fe2O4. J. Appl. Phys. 115, 243904 (2014)

    Article  ADS  Google Scholar 

  70. B.S. Kang, S.K. Choi, C.H. Park, Diffuse dielectric anomaly in perovskite-type ferroelectric oxides in the temperature range of 400–700 °C. J. Appl. Phys. 94, 1904 (2003)

    Article  ADS  Google Scholar 

  71. F. Pomiro, R.D. Sanchez, G. Cuello, A. Maignan, C. Martin, R.E. Carbonio, Spin reorientation, magnetization reversal, and negative thermal expansion observed in RFe0.5Cr0.5O3 perovskites (R = Lu, Yb, Tm). Phys. Rev. B 94, 134402 (2016)

    Article  ADS  Google Scholar 

  72. Y.B. Bazaliy, L.T. Tsymbal, G.N. Kakazei, V.I. Kamenev, P.E. Wigen, Measurements of spin reorientation in YbFeO3 and comparison with modified mean-field theory. Phys. Rev. B 72, 174403 (2005)

    Article  ADS  Google Scholar 

  73. Y. Su, J. Zhang, B. Li, B. Kang, Q. Yu, C. Jing, S. Cao, The dependence of magnetic properties on temperature for rare earth ErCrO3 chromites. Ceramic. Inter. 38, S421–S424 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The author TP would like to thank UGC-DAE, BARC- India, for (UDCSR/MUM/CD/CRSM-261/2017) the project funded under the collaborator research scheme. AG also would like to thank DST-India for the (DST/TM/CERI/C199(G)-2016) project funded under CERI program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avijit Ghosh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patri, T., Justin, P., Babu, P.D. et al. Analysis of dielectric and magnetic phase transitions in Yb(Fe0.5Cr0.5)O3 bulk perovskite. Appl. Phys. A 125, 224 (2019). https://doi.org/10.1007/s00339-019-2516-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2516-x

Navigation