Skip to main content
Log in

High-performance organic–inorganic hybrid perovskite thin-film field-effect transistors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

CH3NH3PbI3 perovskite films with full coverage and negligible roughness have been obtained by the two-step sequential thermal evaporation (TSSTE) process, which are further applied to fabricate thin-film transistors (TFTs). To gain the optimal electrical characteristics in our TFTs, the effect of the evaporation amount of PbI2 on the crystallization and thickness of CH3NH3PbI3 films is studied during the process of TSSTE. As a result, we demonstrate a thin-film field-effect transistors possessing a hole field-effect mobility of 3.55 cm2 V− 1 s− 1 as well as on/off ratio greater than 105 with the optimal CH3NH3PbI3 films as the channel layer. Through a further comparative analysis, MoO3 buffer layer is inserted between the perovskite channel layer and the source–drain electrode to improve the contact resistance of TFTs. As an understanding of device mechanism, a fact that insertion of MoO3 buffer layer into the Au/perovskite interface significantly reduced the contact resistance from 705 to 0.2 kΩ cm is unveiled. By inserting MoO3 buffer layer, the hole field-effect mobility of the CH3NH3PbI3 organic–inorganic hybrid TFTs can reach to 7.47 cm2 V− 1 s− 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Science 338, 643 (2013)

    Article  ADS  Google Scholar 

  2. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H.J. Snaith, Science 342, 341 (2013)

    Article  ADS  Google Scholar 

  3. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012)

    Article  ADS  Google Scholar 

  4. G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel,S. T.C. Mhaisalkar, Sum, Science 342, 344 (2013)

    Article  ADS  Google Scholar 

  5. T. Matsushima et al., Solution-processed organic–inorganic perovskite field-effect transistors with high hole mobilities. Adv. Mater. 28(46), 10275–10281 (2016)

    Article  Google Scholar 

  6. A. Yusoff et al., Ambipolar triple cation perovskite field effect transistors and inverters. Adv. Mater. 29, 8 (2017)

    Google Scholar 

  7. C.-Y. Chang et al., Formation mechanism and control of perovskite films from solution to crystalline phase studied by in situ synchrotron scattering. ACS Appl. Mater. Interfaces 8(40), 26712–26721 (2016)

    Article  Google Scholar 

  8. C.R. Kagan, D.B. Mitzi, C.D. Dimitrakopoulos. Organic–inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286(5441), 945–947 (1999)

    Article  Google Scholar 

  9. F. Chiarella et al., Preparation and transport properties of hybrid organic–inorganic CH3NH3SnBr3 films. Appl. Phys. A Mater. Sci. Process. 86(1), 89–93 (2007)

    Article  ADS  Google Scholar 

  10. F. Li et al., Ambipolar solution-processed hybrid perovskite phototransistors. Nat. Commun. 6, 8238 (2015)

    Article  Google Scholar 

  11. Y. Mei et al., Electrostatic gating of hybrid halide perovskite field-effect transistors: balanced ambipolar transport at room-temperature. MRS Commun. 5(2), 297–301 (2015)

    Article  Google Scholar 

  12. J. Xu et al., The optimization of organic–inorganic perovskite films by annealing atmosphere for applications in transistors. Physica Status Solidi (a) 214(9), 1700170 (2017)

    Article  ADS  Google Scholar 

  13. Y. Peng et al., The influence of PbI2 on characteristic of organic–inorganic hybrid perovskite thin films. Model. Numer. Simul. Mater. Sci. 7(04), 47 (2017)

    Google Scholar 

  14. H. Sirringhaus, Device physics of solution-processed organic field-effect transistors. Adv. Mater. 17(20), 2411–2425 (2005)

    Article  Google Scholar 

  15. J. Zaumseil, H. Sirringhaus, Electron and ambipolar transport in organic field-effect transistors. Chem. Rev. 107(4), 1296–1323 (2007)

    Article  Google Scholar 

  16. Y. Wu et al., Organic–inorganic hybrid CH3NH3PbI3 perovskite materials as channels in thin-film field-effect transistors. RSC Adv. 6(20), 16243–16249 (2016)

    Article  Google Scholar 

  17. J. Meyer et al., Highly efficient simplified organic light emitting diodes. Appl. Phys. Lett. 91(11), 113506 (2007)

    Article  ADS  Google Scholar 

  18. C.-W. Chu et al., High-performance organic thin-film transistors with metal oxide/metal bilayer electrode. Appl. Phys. Lett. 87(19), 193508 (2005)

    Article  ADS  Google Scholar 

  19. A.G.F. Janssen et al., Highly efficient organic tandem solar cells using an improved connecting architecture. Appl. Phys. Lett. 91(7), 073519 (2007)

    Article  ADS  Google Scholar 

  20. F.-C. Chen, L. Cheng-Hao, Construction and characteristics of tandem organic solar cells featuring small molecule-based films on polymer-based subcells. J. Phys. D Appl. Phys. 43(2), 025104 (2009)

    Article  ADS  Google Scholar 

  21. D. Kumaki, T. Umeda, S. Tokito, Reducing the contact resistance of bottom-contact pentacene thin-film transistors by employing a MoOx carrier injection layer. Appl. Phys. Lett. 92(1), 1 (2008)

    Article  Google Scholar 

  22. S. Cacovich, L. Ciná, F. Matteocci et al., Gold and iodine diffusion in large area perovskite solar cells under illumination. Nanoscale 9(14), 4700 (2017)

    Article  Google Scholar 

  23. K. Domanski, J.P. Correabaena, N. Mine et al., Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells. ACS Nano, 2016, 10(6)

    Article  Google Scholar 

  24. D.J. Gundlach et al., An experimental study of contact effects in organic thin film transistors. J. Appl. Phys. 100(2), 024509 (2006)

    Article  ADS  Google Scholar 

  25. P.V. Necliudov et al., Contact resistance extraction in pentacene thin film transistors. Solid-State Electr. 47(2), 259–262 (2003)

    Article  ADS  Google Scholar 

  26. H. Klauk et al., Contact resistance in organic thin film transistors. Solid-State Electr. 47(2), 297–301 (2003)

    Article  ADS  Google Scholar 

  27. T. Minari, P. Darmawan, C. Liu et al., Highly enhanced charge injection in thienoacene-based organic field-effect transistors with chemically doped contact. Appl. Phys. Lett. 100(9), 59 (2012)

    Article  Google Scholar 

  28. W. Zhang et al., Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat. Commun. 6, 6142 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The work reported here was supported by National Natural Science Foundation of China (Project No. 61076006), National Natural Science Foundation of China (Zhang; Project No. 61377031) and the Flat-Panel Display Special Project of China’s 863 Plan (Project No. 2008AA03A335).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, L., Peng, Y., Zhou, Z. et al. High-performance organic–inorganic hybrid perovskite thin-film field-effect transistors. Appl. Phys. A 124, 624 (2018). https://doi.org/10.1007/s00339-018-2049-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2049-8

Navigation