Skip to main content
Log in

Ultrafast dynamics of non-equilibrium electrons and strain generation under femtosecond laser irradiation of Nickel

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We present a theoretical study of the ultrafast electron dynamics in transition metals of large electron–phonon coupling constant using ultrashort pulsed laser beams. The significant influence of the dynamics of produced nonthermal electrons to electron thermalisation and electron–phonon interaction is thoroughly investigated for various values of the pulse duration (i.e., from 10 fs to 2.3 ps). The model correlates the role of nonthermal electrons, relaxation processes and induced stress–strain fields. Simulations are presented by choosing Nickel (Ni) as a test material to compute electron–phonon relaxation time due to its large electron–phonon coupling constant. We demonstrate that the consideration of the aforementioned factors leads to significant changes compared to the results the traditional two-temperature model provides. The proposed model predicts a substantially (~ 33%) smaller damage threshold and a large increase of the stress (~ 20%, at early times) which first underlines the role of the nonthermal electron interactions and second enhances its importance with respect to the precise determination of laser specifications in material micromachining techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Vorobyev, C. Guo, Laser Photonics Rev. 7, 385 (2012)

    Article  Google Scholar 

  2. V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, C. Fotakis, Nanotechnology 17, 3234 (2006)

    Article  ADS  Google Scholar 

  3. V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S.H. Anastasiadis, C. Fotakis, Adv. Mater. 20, 4049 (2008)

    Article  Google Scholar 

  4. D. Bäuerle, Laser Processing and Chemistry. (Springer, Berlin; New York, 2000)

    Book  Google Scholar 

  5. J.-C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on a Femtosecond Time Scale. (Elsevier/Academic Press, Amsterdam; Boston, 2006)

    Google Scholar 

  6. E.L. Papadopoulou, A. Samara, M. Barberoglou, A. Manousaki, S.N. Pagakis, E. Anastasiadou, C. Fotakis, E. Stratakis, Tissue Eng. Part C Me 16, 497 (2010)

    Article  Google Scholar 

  7. Z.B. Wang, M.H. Hong, Y.F. Lu, D.J. Wu, B. Lan, T.C. Chong, J. Appl. Phys. 93, 6375 (2003)

    Article  ADS  Google Scholar 

  8. C.R. Zuhlke, T.P. Anderson, D.R. Alexander, Opt. Express 21, 8460 (2013)

    Article  ADS  Google Scholar 

  9. M. Konstantaki, P. Childs, M. Sozzi, S. Pissadakis, Laser Photonics Rev. 7, 439 (2013)

    Article  Google Scholar 

  10. G.D. Tsibidis, M. Barberoglou, P.A. Loukakos, E. Stratakis, C. Fotakis, Phys. Rev. B 86, 115316 (2012)

    Article  ADS  Google Scholar 

  11. G.D. Tsibidis, C. Fotakis, E. Stratakis, Phys. Rev. B 92, 041405(R) (2015)

    Article  ADS  Google Scholar 

  12. G.D. Tsibidis, E. Stratakis, P.A. Loukakos, C. Fotakis, Appl. Phys. A 114, 57 (2014)

    Article  ADS  Google Scholar 

  13. T.J.Y. Derrien, T.E. Itina, R. Torres, T. Sarnet, M. Sentis, J. Appl. Phys. 114, 083104 (2013)

    Article  ADS  Google Scholar 

  14. J.Z.P. Skolski, G.R.B.E. Römer, J.V. Obona, V. Ocelik, A.J. Huis in 't Veld, J.Th.M. De Hosson, Phys. Rev. B 85, 075320 (2012)

    Article  ADS  Google Scholar 

  15. J. Bonse, J. Krüger, S. Höhm, A. Rosenfeld, J. Laser Appl. 24, 042006 (2012)

    Article  ADS  Google Scholar 

  16. F. Garrelie, J.P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, O. Parriaux, Opt. Express 19, 9035 (2011)

    Article  ADS  Google Scholar 

  17. J. Wang, C. Guo, Appl. Phys. Lett. 87, 251914 (2005)

    Article  ADS  Google Scholar 

  18. M. Huang, F.L. Zhao, Y. Cheng, N.S. Xu, Z.Z. Xu, ACS Nano 3, 4062 (2009)

    Article  Google Scholar 

  19. J. Bonse, J. Kruger, J. Appl. Phys. 108, 034903 (2010)

    Article  ADS  Google Scholar 

  20. G.D. Tsibidis, E. Skoulas, A. Papadopoulos, E. Stratakis, Phys. Rev. B 94, 081305(R) (2016)

    Article  ADS  Google Scholar 

  21. S.M. Petrovic, B. Gakovic, D. Perusko, E. Stratakis, I. Bogdanovic-Radovic, M. Cekada, C. Fotakis, B. Jelenkovic, J. Appl. Phys. 114, 233108 (2013)

    Article  ADS  Google Scholar 

  22. Y. Shimotsuma, P.G. Kazansky, J.R. Qiu, K. Hirao, Phys. Rev. Lett. 91, 247405 (2003)

    Article  ADS  Google Scholar 

  23. N. Chichkov, C. Momma, S. Nolte, F. vonAlvensleben, A. Tunnermann, Appl. Phys. a Mater. Sci. Process. 63, 109 (1996)

    Article  ADS  Google Scholar 

  24. R.H.M. Groeneveld, R. Sprik, A. Lagendijk, Phys. Rev. B 45, 5079 (1992)

    Article  ADS  Google Scholar 

  25. N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, F. Vallée, Phys. Rev. B 61, 16956 (2000)

    Article  ADS  Google Scholar 

  26. S.I. Anisimov, B.L. Kapeliov, T.L. Perelman, Sov. Phys. Tech. Phys. 11, 945 (1974 [Zh. Eksp. Teor. Fiz. 66, 776 (1974) (in Russian)]

  27. M. Lisowski, P.A. Loukakos, U. Bovensiepen, J. Stahler, C. Gahl, M. Wolf, Appl. Phys. a Mater. Sci. Process. 78, 165 (2004)

    Article  ADS  Google Scholar 

  28. B. Rethfeld, A. Kaiser, M. Vicanek, G. Simon, Phys. Rev. B 65, 214303 (2002)

    Article  ADS  Google Scholar 

  29. E. Carpene, Phys. Rev. B 74, 024301 (2006)

    Article  ADS  Google Scholar 

  30. G.D. Tsibidis, Appl. Phys. Lett. 104, 051603 (2014)

    Article  ADS  Google Scholar 

  31. K. Sun, F. Vallee, L.H. Acioli, E.P. Ippen, J.G. Fujimoto, Phys. Rev. B 50, 15337 (1994)

    Article  ADS  Google Scholar 

  32. S. Pogna, G. Dal Conte, V.G. Soavi, Y.-J. Kravets, S. Kim, A.N. Longhi, G. Grigorenko, G. Cerullo, Della, Valle, ACS Photonics 3, 1508 (2016)

    Article  Google Scholar 

  33. G. Della Valle, M. Conforti, S. Longhi, G. Cerullo, D. Brida, Phys. Rev. B 86, 155139 (2012)

    Article  ADS  Google Scholar 

  34. G. Della Valle et al., Phys. Rev. B 91, 235440 (2015)

    Article  ADS  Google Scholar 

  35. J. Garduno-Mejia, M.P. Higlett, S.R. Meech, Chem. Phys. 341, 276 (2007)

    Article  ADS  Google Scholar 

  36. J. Garduño-Mejía, M.P. Higlett, S.R. Meech, Surf. Sci. 602, 3125 (2008)

    Article  ADS  Google Scholar 

  37. E. Tzianaki, M. Bakarezos, G.D. Tsibidis, Y. Orphanos, P.A. Loukakos, C. Kosmidis, P. Patsalas, M. Tatarakis, N.A. Papadogiannis, Opt. Express 23, 17191 (2015)

    Article  ADS  Google Scholar 

  38. S. Ivanov, L.V. Zhigilei, Phys. Rev. B 68, 064114 (2003)

    Article  ADS  Google Scholar 

  39. D.S. Leveugle, L.V. Ivanov, Zhigilei, Appl. Phys. A 79, 1643 (2004)

    ADS  Google Scholar 

  40. J. Hohlfeld, S.S. Wellershoff, J. Güdde, U. Conrad, V. Jahnke, E. Matthias, Chem. Phys. 251, 237 (2000)

    Article  ADS  Google Scholar 

  41. Z. Lin, L.V. Zhigilei, V. Celli, Phys. Rev. B 77, 075133 (2008)

    Article  ADS  Google Scholar 

  42. D. Rakic, A.B. Djurisic, J.M. Elazar, M.L. Majewski, Appl. Opt. 37, 5271 (1998)

    Article  ADS  Google Scholar 

  43. S. Halas, T. Durakiewicz, J. Phys. Condensed Matter 10, 10815 (1998)

    Article  ADS  Google Scholar 

  44. Kittel, Introduction to Solid State Physics. (Wiley, Hoboken, NJ, 2005)

    MATH  Google Scholar 

  45. K. Sokolowski-Tinten, D. von der Linde, Phys. Rev. B 61, 2643 (2000)

    Article  ADS  Google Scholar 

  46. V. Golosov, A.A. Ionin, Y.R. Kolobov, S.I. Kudryashov, A.E. Ligachev, Y.N. Novoselov, L.V. Seleznev, D.V. Sinitsyn, J. Exp. Theor. Phys. 113, 14 (2011)

    Article  ADS  Google Scholar 

  47. Y.P. Ren, J.K. Chen, Y.W. Zhang, J. Appl. Phys. 110, 113102 (2011)

    Article  ADS  Google Scholar 

  48. Y.P. Ren, J.K. Chen, Y.W. Zhang, J. Huang, Appl. Phys. Lett. 98, 191105 (2011)

    Article  ADS  Google Scholar 

  49. Results from unpublished work. http://newton.ex.ac.uk/research/emag/pubs/Theses/Kruglyak_PhD_Thesis.pdf

  50. M.W. Chase, J.L. Curnutt, J.R. Downey, R.A. McDonald, A.N. Syverud, E.A. Valenzuela, J. Phys. Chem. Ref. Data 11, 695 (1982)

    Article  ADS  Google Scholar 

  51. Y. Mueller, B. Rethfeld, Phys. Rev. B 87, 035139 (2013)

    Article  ADS  Google Scholar 

  52. M. Chen, H.F. Xu, Y.F. Jiang, L.Z. Sui, D.J. Ding, H. Liu, M.X. Jin, Appl. Surf. Sci. 257, 1678 (2010)

    Article  ADS  Google Scholar 

  53. D.R. Lide, CRC Handbook of Chemistry and Physics, 84th edn. (CRC Press, London, 2003–2004)

  54. P.B. Johnson, R.W. Christy, Phys. Rev. B 9, 5056 (1974)

    Article  ADS  Google Scholar 

  55. E. Tsibidis, K.E. Stratakis, Aifantis, J. Appl. Phys. 111, 053502 (2012)

    Article  ADS  Google Scholar 

  56. G.B. Arfken, H.-J. Weber, F.E. Harris, Mathematical Methods for Physicists: a Comprehensive Guide. (Elsevier, Amsterdam; Boston, 2013)

    MATH  Google Scholar 

  57. N.W. Ashcroft, N.D. Mermin, Solid State Physics. (Holt, New York, 1976)

    MATH  Google Scholar 

  58. C. Thomsen, H.T. Grahn, H.J. Maris, J. Tauc, Phys. Rev. B 34, 4129 (1986)

    Article  ADS  Google Scholar 

  59. O. Matsuda, M.C. Larciprete, R. Li Voti, O.B. Wright, Ultrasonics 56, 3 (2015)

    Article  Google Scholar 

  60. E. Tzianaki, M. Bakarezos, G.D. Tsibidis, S. Petrakis, P.A. Loukakos, C. Kosmidis, M. Tatarakis, N.A. Papadogiannis, Appl. Phys. Lett. 108, 254102 (2016)

    Article  ADS  Google Scholar 

  61. I.A. Artyukov, D.A. Zayarniy, A.A. Ionin, S.I. Kudryashov, S.V. Makarov, P.N. Saltuganov, Jetp Lett. 99, 51 (2014)

    Article  ADS  Google Scholar 

  62. D.A. Zayarny, A.A. Ionin, S.I. Kudryashov, S.V. Makarov, A.A. Kuchmizhak, O.B. Vitrik, Y.N. Kulchin, Laser Phys. Lett. 13, 076101 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

G.D.T acknowledges financial support from LiNaBioFluid (funded by EU’s H2020 framework programme for research and innovation under Grant Agreement No. 665337) and Nanoscience Foundries and Fine Analysis (NFFA)–Europe H2020-INFRAIA-2014-2015 (under Grant Agreement No. 654360).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George D. Tsibidis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

339_2018_1704_MOESM1_ESM.docx

See Supplementary Material that provides figures of electron/lattice thermal response, thermomechanical behavior at various fluences (DOCX 337 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsibidis, G.D. Ultrafast dynamics of non-equilibrium electrons and strain generation under femtosecond laser irradiation of Nickel. Appl. Phys. A 124, 311 (2018). https://doi.org/10.1007/s00339-018-1704-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1704-4

Navigation