Skip to main content

Advertisement

Log in

Microindentation on the porous copper surface modulations

Applied Physics A Aims and scope Submit manuscript

Abstract

This study aimed to investigate the mechanical properties of a surface modulation which was realized through compaction, and then sintering of copper powders. To this goal, Berkovich type of indenter and depth-sensing indentation technique were used in microindentation to measure the hardness and modulus of elasticity values at different features of compact. Indentations were performed with a peak force of 50 mN. Hardness values were obtained in 0.88–1.12 GPa range while the modulus of elasticity was recorded in the 70–111 GPa interval. Even though both modulus of elasticity and hardness values were noted to be different for copper powders and substrate, one-way ANOVA analyses showed that the differences in both modulus of elasticity and hardness values are insignificant. FE modeling of microindentation was also performed and validated. It was shown that the force–displacement values obtained from FE analyses are quite well in agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Falat, P. Matkowski, B. Płatek, C. Zandén, J. Felba, L.L. Ye, J. Liu, Investigation on interaction between indium based thermal interface material and copper and silicon substrates, in Microelectronics Packaging Conference (Grenoble, 2013), pp. 1–5

  2. R.M. German, Sintering Theory and Practice (Wiley, Hoboken, 1996), p. 555

    Google Scholar 

  3. Copper Development Association Inc. https://www.copper.org/education/c-facts/electronics/print-category.html. Accessed 17 Nov 2016

  4. O.N. Cora, D. Min, M. Koç, M. Kaviany, Microscale-modulated porous coatings: fabrication and pool-boiling heat transfer performance. J. Micromech. Microeng 20(3), 035020 (2010)

    Article  Google Scholar 

  5. D.H. Min, G.S. Hwang, Y. Usta, O.N. Cora, M. Koc, M. Kaviany, 2-D and 3-D modulated porous coatings for enhanced pool boiling. Int. J. Heat. Mass. Trans 52(11–12), 2607–2613 (2009)

    Article  Google Scholar 

  6. S.J. Bull, N.A. Moharrami, A comparison of nanoindentation pile-up in bulk materials and thin films. Thin Solid Films 572, 189–199 (2014)

    Article  ADS  Google Scholar 

  7. K.W. McElhaney, J.J. Vlassak, W.D. Nix, Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J. Mater. Res. 13(5), 1300–1306 (1998)

    Article  ADS  Google Scholar 

  8. K.R. Narayanan, S. Subbiah, I. Sridhar, Indentation response of single-crystal copper using rate-independent crystal plasticity. Appl. Phys. A 105(2), 453–461 (2011)

    Article  ADS  Google Scholar 

  9. T.H. Wang, T.H. Fang, Y.C. Lin, Finite-element analysis of the mechanical behavior of Au/Cu and Cu/Au multilayers on silicon substrate under nanoindentation. Appl. Phys. A 90(3), 457–463 (2008)

    Article  ADS  Google Scholar 

  10. P. Xue, G.M. Xie, B.L. Xiao, Z.Y. Ma, L. Geng, Effect of heat input conditions on microstructure and mechanical properties of friction-stir-welded pure copper. Metall. Mater. Trans. A 41(8), 2010–2021 (2010)

    Article  Google Scholar 

  11. N. Kang, P. Coddet, H. Liao, C. Coddet, Cold gas dynamic spraying of a novel micro-alloyed copper: microstructure, mechanical properties. J. Alloy. Compd 686, 399–456 (2016)

    Article  Google Scholar 

  12. S. Kucharski, D. Jarząbek, A. Piątkowska, S. Woźniacka, Decrease of nano-hardness at ultra-low indentation depths in copper single crystal. Exp. Mech 56(3), 381–393 (2016)

    Article  Google Scholar 

  13. B. Öztürk, Ö.N. Cora, M. Koç, Effect of sintering temperature on the porosity and microhardness of the micro-scale 3-D porous gradient surfaces, in 8th International Conference Multi-Material Micro Manufacture, (2011), pp. 176–179

  14. International Organization for Standardization, ISO 14577-1 Metallic materials, Part 1: Test method. (International Organization for Standardization, Geneva, 2015)

    Google Scholar 

  15. A.C. Fischer-Cripps, Critical review of analysis and interpretation of nanoindentation test data. Surf. Coat. Tech 200(14–15), 4153–4165 (2006)

    Article  Google Scholar 

  16. F.M. Borodich, The Hertz-type and adhesive contact problems for depth-sensing indentation. Adv. Appl. Mech 47, 225–366 (2014)

    Article  Google Scholar 

  17. S. Bigl, T. Schöberl, S. Wurster, M.J. Cordill, D. Kiener, Correlative microstructure and topography informed nanoindentation of copper films. Surf. Coat. Technol. 307, 404–413 (2016)

    Article  Google Scholar 

  18. S. Vincent, B.S. Murty, M.J. Kramer, J. Bhatt, Micro and nano indentation studies on Zr60Cu10Al15Ni15 bulk metallic glass. Mater. Des. 65, 98–103 (2015)

    Article  Google Scholar 

  19. B. Bose, R.J. Klassen, Effect of copper addition and heat treatment on the depth dependence of the nanoindentation creep of aluminum at 300 K. Mater. Sci. Eng. A 500, 164–169 (2009)

    Article  Google Scholar 

  20. D. Galusek, F.L. Riley, The influence of sintering additives on the indentation response of liquid-phase-sintered polycrystalline aluminas. Philos. Mag. A 82, 2041–2057 (2002)

    Article  ADS  Google Scholar 

  21. W. Li, C. Huang, M. Yu, H. Liao, Investigation on mechanical property of annealed copper particles and cold sprayed copper coating by a micro-indentation testing. Mater. Des. 46, 219–226 (2013)

    Article  Google Scholar 

  22. M. Lichinchi, C. Lenardi, J. Haupt, R. Vitali, Simulation of Berkovich nanoindentation experiments on thin films using finite element method. Thin Solid Films 312(1–2), 240–248 (1998)

    Article  ADS  Google Scholar 

  23. K.D. Bouzakis, M. Pappa, G. Maliaris, N. Michailidis, Fast determination of parameters describing manufacturing imperfections and operation wear of nanoindenter tips. Surf. Coat. Tech 215, 218–223 (2013)

    Article  Google Scholar 

  24. J. Appa Rao, J. Babu Rao, S. Kamaluddin, M.M.M. Sarcar, N.R.M.R. Bhargava, Studies on cold workability limits of pure copper using machine vision system and its finite element analysis. Mater. Design 30(6), 2143–2151 (2009)

    Article  Google Scholar 

  25. S. Kalpakjian, S.R. Schmid, H. Musa, Mechanical behavior, testing, and manufacturing properties of materials. 6th edn. Manuf. Process. Eng. Mater. Pearson Education, USA, pp. 80–84 (2009)

  26. X. Chen, N. Ogasawara, M. Zhao, N. Chiba, On the uniqueness of measuring elastoplastic properties from indentation: the indistinguishable mystical materials. J. Mech. Phys. Solids 55(8), 1618–1660 (2007)

    Article  ADS  MATH  Google Scholar 

  27. E.J. Pavlina, C.J. Van Tyne, Correlation of yield strength and tensile strength with hardness for steels. J. Mater. Eng. Perform 17(6), 888–893 (2008)

    Article  Google Scholar 

  28. C.A. Charitidis, E.P. Koumoulos, V. Nikolakis, D.A. Dragatogiannis, Structural and nanomechanical properties of a zeolite membrane measured using nanoindentation. Thin Solid Films 526, 168–175 (2012)

    Article  ADS  Google Scholar 

  29. S. Kucharski, D. Jarzabek, Depth dependence of nanoindentation pile-up patterns in copper single crystals. Metall. Mater. Trans. A 45(11), 4997–5008 (2014)

    Article  Google Scholar 

  30. W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19(1), 3–20 (2004)

    Article  ADS  Google Scholar 

  31. J.D. Gale, A. Achuthan, The effect of work-hardening and pile-up on nanoindentation measurements. J. Mater. Sci 49(14), 5066–5075 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Gaziosmanpaşa University for sharing their lab capabilities and their assistance in indentation measurements. The help of BİAS Engineering’s personnel in FE modeling-related issues is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ömer Necati Cora.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekmekci, D., Yılmaz, F., Kölemen, U. et al. Microindentation on the porous copper surface modulations. Appl. Phys. A 123, 705 (2017). https://doi.org/10.1007/s00339-017-1327-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1327-1

Navigation