Skip to main content
Log in

High UV light performance for the degradation of Rhodamine B dye by synthesized Bi2S3ZnO nanocomposite

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Heterogeneous photocatalytic degradation of organics in water and wastewater by large band gap semiconductors has offered an attractive alternative for environmental remediation. Zinc oxide is a very fast and efficient catalyst because of its wide band gap and large exciton binding energy. In this study, an efficient Bi2S3ZnO was synthesized by sonochemical method. The obtained product was further characterized by TEM, SEM, XRD, FT-IR and UV–DRS analysis. Scanning electron microscopy images revealed that Bi2S3ZnO has flower-like structure. The synthesized flower-like Bi2S3ZnO nanocomposites were more efficient than commercial ZnO for the degradation of organic contaminants under UV light irradiation. The prepared material shows enhanced photocatalytic activity on Rhodamine B dye solution under UV light irradiation. The percentage removal of dye was calculated by UV–Vis spectrophotometer. In addition, Bi2S3ZnO showed tremendous photocatalytic stability after seven cycles under UV light irradiation. A possible mechanism for the photocatalytic oxidative degradation was also discussed. It is concluded that the Bi2S3ZnO nanocomposite acts as an excellent photocatalyst for the decomposition of RhB and it could be a potential material for essential wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Scheme 1

Similar content being viewed by others

References

  1. Y. Yang, J. Luan, Synthesis, property characterization and photocatalytic activity of the Novel composite Polymer Polyaniline/Bi2SnTiO7. Mol 17, 2752–2772 (2012)

    Article  Google Scholar 

  2. W. Patrick, S. Dietmar, Photodegradation of rhodamine B in aqueous solution via SiO2@TiO2 nano-spheres. J. Photochem. Photobiol., A 185, 19–25 (2007)

    Article  Google Scholar 

  3. M. Yazdanbakhsh, I. Khosravi, E.K. Goharshadi, A. Youssefi, Fabrication of nanospinal ZnCr2O4 using sol-gel method and its application on the removal of azo dye from aqueous solution. J. Hazad Mater. 184, 684–689 (2010)

    Article  Google Scholar 

  4. N. Nasuha, B.H. Hameed, Adsorption of methylene Blue from aqueous solution onto NaOH-modified rejected tea. Chem. Eng. J. 166, 783–786 (2011)

    Article  Google Scholar 

  5. M. Kaneko, I. Okura, Application to environmental cleaning. In: Kaneko M, Okura I, editors. Photocatalysis: Science and Technology. Tokyo, Berlin: Kodansha, Springer; 2002. p. 109–84

  6. M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: a review. Water Res. 44(10), 2997–3027 (2010)

    Article  Google Scholar 

  7. E. Forgas, T. Cserhati, G. Oros, Removal of synthetic dyes from wastewater: a review. Environ. Int. 30, 953–971 (2004)

    Article  Google Scholar 

  8. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95(1), 69–96 (1995)

    Article  Google Scholar 

  9. K. Hashimoto, H. Irie, A. Fujishima, TiO2 photocatalysis: a historical overview and future prospects. Jpn. J. Appl. Phys. 44(12), 8269–8285 (2005)

    Article  ADS  Google Scholar 

  10. R. Velmurugan, M. Swaminathan, An efficient nanostructured ZnO for dye sensitized degradation of reactive red 120 dye under solar light. Solar Energy Mater Sol Cells 95, 942–950 (2011)

    Article  Google Scholar 

  11. A.H. El-Sheikh, A.P. Newman, H. Al-Daffaee, S. Phull, N. Cresswell, S. York, Deposition of anatase on the surface of activated carbon. Surf. Coat. Technol. 187(2–3), 284–292 (2004)

    Article  Google Scholar 

  12. M.B. Moghaddam, A.H. Yangjeh, Effect of Operational Parameters on Photodegradation of Methylene Blue on ZnS nanoparticles prepared in presence of an ionic liquid as a highly efficient photocatalyst. J. Iran. Chem. Soc. 8, S169–S175 (2011)

    Article  Google Scholar 

  13. S. Wu, H. Zheng, Y. Lian, Y. Wu, Preparation, characterization and enhanced visible-light photocatalytic activities of BiPO4/BiVO4 composites. Mater. Res. Bull. 48, 2901–2907 (2013)

    Article  Google Scholar 

  14. Y. Lei, G. Wang, S. Song, W. Fan, H. Zhang, Synthesis characterization and assembly of BiOCl nanostructure and their photocatalytic properties. Crys. Eng. Commun. 11, 1857–1862 (2009)

    Article  Google Scholar 

  15. K. Zhang, D. Zhang, J. Liu, K. Ren, H. Luo, Y. Peng, G. Li, X. Yu, A novel nanoreactor framework of iodine-incorporated BiOCl core-shell structure: enhanced light-harvesting system for photocatalysis. Crys. Eng. Commun. 14, 700–707 (2012)

    Article  Google Scholar 

  16. M. Gondal, X. Chang, Z. Yamani, UV-light induced photocatalytic decolorization of Rhodamine 6G molecules over BiOCl from aqueous solution. Chem. Eng. J. 165, 250–257 (2010)

    Article  Google Scholar 

  17. L. Chen, Y. Shuang-Feng, S.L. Luo, R. Huang, Q. Zhang, T. Hong, P.C.T. Au, Bi2O2CO3/BiOI Photocatalysts with heterojunctions highly efficient for visible-light treatment of dye-containing wastewater. Indust. Eng. Chem. Res 51, 6760–6768 (2012)

    Article  Google Scholar 

  18. F. Qin, R. Wang, G. Li, F. Tian, H. Zhao, R. Chen, Highly efficient photo catalytic reduction of Cr(VI) by bismuth hollow nanospheres. Catal. Commun. 42, 14–19 (2013)

    Article  Google Scholar 

  19. L. Zhang, Y. Zhu, A review of controllable synthesis and enhancement of performances of bismuth tungstate visible-light-driven photocatalysts. Catal Sci. Tech 2, 694–706 (2012)

    Article  Google Scholar 

  20. H. Gan, G. Zhang, H. Huang, Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli by Bi2O2CO3/Bi3NbO7 composites. J. Hazard. Mater. 250–251, 131–137 (2013)

    Article  Google Scholar 

  21. M.M. Patil, V.V. Deshpande, S.R. Dhage, V. Ravi, Synthesis of bismuth oxide nanoparticles at 100°C. Mater. Lett. 59, 2523–2525 (2005)

    Article  Google Scholar 

  22. A. Hameed, T. Montini, V. Gombac, P. Fornasiero, Surface Phases and Photocatalytic Activity Correlation of Bi2O3/Bi2O4-x Nanocomposite. J. Am. Chem. Soc. 130, 9658–9659 (2008)

    Article  Google Scholar 

  23. W. Yang, D. Zhou, G. Yin, R. Wang, R. Zhang, Characterization of ZnO based varistor derived from nano ZnO powders and ultrafine dopants. J. Mater. Sci. Technol. 21, 183–186 (2005)

    Article  Google Scholar 

  24. W. Yang, B. Ma, W. Wang, WenY, Zeng D, Shan B, Enhanced photosensitized activity of a BiOCl–Bi2WO6 heterojunction by effective interfacial charge transfer†. Phys. Chem. Chem. Phys. 15, 19387–19394 (2013)

    Article  Google Scholar 

  25. G. Xiaoming, W. Jing, F. Feng, L. Wenhong, Preparation of Cu-BiVO4 and its photocatalytic properties for desulfurization of model oil. China Pet. Process. Petrochem. Technol. 14, 17–23 (2012)

    Google Scholar 

  26. Z. Qin, Z. Liu, Y. Liu, K. Yang, Synthesis of BiYO3 for degradation of organic compounds under visible-light irradiation. Catal. Commun. 10, 1604–1608 (2009)

    Article  Google Scholar 

  27. J. Luan, W. Zhao, J. Feng, H. Cai, H. Zheng, B. Pan, X. Wu, Z. Zou, Y. Li, Structural, photo physical and photocatalytic properties of novel Bi2AlVO7. J. Hazard. Mater. 164, 781–789 (2009)

    Article  Google Scholar 

  28. S. Parra, J. Olivero, L. Pacheco, C. Pulgarin, Structural properties and photo reactivity relationships of substituted phenols in TiO2 suspensions. Appl. Catal B: Environ. 43, 293–301 (2003)

    Article  Google Scholar 

  29. L. Chen, R. Huang, S.F. Yin, S.L. Luo, C.T. Au, Flower-like Bi2O2CO3: facile synthesis and their photocatalytic application in treatment of dye-containing wastewater. Chem. Eng. J. 193–194, 123–130 (2012)

    Article  Google Scholar 

  30. M. Salehi, H. Hashemipour, M. Mirzaee, Experimental study of influencing factors and kinetics in catalytic removal of methylene blue with TiO2 nanopowder. Am. J. Environ. Eng. 2, 1–7 (2012)

    Article  Google Scholar 

  31. C. Ram, R.K. Pareek, V. Singh, Photocatalytic degradation of textile dye by using titanium dioxide nanocatalyst. Inter. J. Theor. Appl. Sci 4(2), 82–88 (2012)

    Google Scholar 

  32. S. Munusamy, S. Aparna, R. Prasad, Photocatalytic effect of TiO2 and the effect of dopants on degradation of brilliant green. Sus. Chem. Process 1(4), 1–8 (2013)

    Google Scholar 

  33. A.A.A. Kadhum, Studying of photodegradation of prepared azo-dyes by TiO2. Natl. J. Chem. 30, 287–296 (2008)

    Google Scholar 

  34. M. Sangareswari, M. Meenakshi Sundaram, Development of efficiency improved polymer modified TiO2 for the photocatalytic degradation of an organic dye from wastewater environment. Appl. Water. Sci. 351, 1–12 (2015)

    Google Scholar 

  35. M.M. Rahman, M.A. Hasnat, K. Sawada, Degradation of commercial textile dye by Fenton’s reagent under xenon beam irradiation in aqueous medium. J. Sci. Res 1(1), 108–120 (2009)

    Google Scholar 

  36. J. Yao, C. Wang, Decolorization of methylene blue with TiO2 sol via UV irradiation photocatalytic degradation. Inter. J. Photoenergy 1, 1–6 (2010)

    Article  Google Scholar 

  37. B. Neppolian, H.C. Choi, S. Sakthivel, B. Arabindoo, V. Murugesan, Solar/UV-induced photocatalytic degradation of three commercial textile dyes. J. Hazard. Mater B 89, 303–317 (2002)

    Article  Google Scholar 

  38. S. Balachandran, M. Swaminathan, The simple, template free synthesis of a Bi2S3–ZnO heterostructure and its superior photocatalytic activity under UV-A light†. Dalton Trans. 42, 5338–5347 (2013)

    Article  Google Scholar 

  39. H. Zhang, R. Zong, Y. Zhu, Photocorrosion Inhibition and Photoactivity Enhancement for Zinc Oxide via Hybridization with Monolayer Polyaniline. J. Phys. Chem. C 113, 4605–4611 (2009)

    Article  Google Scholar 

  40. M. Long, W. Cai, J. Cai, B. Zhou, X. Chai, Y. Wu, Efficient photocatalytic degradation of phenol over Co3O4/BiVO4 composite under visible light irradiation. J. Phys. Chem. B 110, 20211–20216 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank UGC, Delhi for providing financial support and The Management, Ayya Nadar Janaki Ammal College, Sivakasi for providing lab facilities to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Meenakshi Sundaram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sangareswari, M., Meenakshi Sundaram, M. High UV light performance for the degradation of Rhodamine B dye by synthesized Bi2S3ZnO nanocomposite. Appl. Phys. A 123, 364 (2017). https://doi.org/10.1007/s00339-017-0969-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0969-3

Keywords

Navigation