Skip to main content
Log in

Structural and nanomechanical characterization of niobium films deposited by DC magnetron sputtering

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nb thin films were deposited onto Si wafers by direct current (DC) magnetron sputtering at different deposition pressures. The microstructure and nanomechanical properties of Nb films were investigated by scanning electron microscope, X-ray diffractometer, transmission electron microscope, atomic force microscope and nanoindenter. The results revealed that the grain size, thickness, surface roughness, the reduced elastic modulus (Er) and hardness (H) values of Nb thin films increased at the pressure range of 0.61–0.68 Pa. Meanwhile, the porosity of Nb films decreased with the increase in deposition pressure. The lattice deformation of Nb thin films changed from negative to positive with the increase in deposition pressure. It is concluded that deposition pressure influences the microstructure and nanomechanical properties of Nb films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L.P. Rokhinson, X. Liu, J.K. Furdyna, The fractional a.c. Josephson effect in a semiconductor-superconductor nanowire as a signature of Majorana particles. Nat. Phys. 8, 795–799 (2012)

    Article  Google Scholar 

  2. A.J. Annunziata, D.F. Santavicca, J.D. Chudow, L. Frunzio, M.J. Rooks, A. Frydman, D.E. Prober, Niobium superconducting nanowire single-photon detectors. IEEE Trans. Appl. Supercond. 19, 327–331 (2009)

    Article  ADS  Google Scholar 

  3. E. Arslan, Structural, mechanical and corrosion properties of NbN films deposited using dc and pulsed dc reactive magnetron sputtering. Surf. Eng. 26, 615–619 (2010)

    Article  MathSciNet  Google Scholar 

  4. A. Casaburi, N. Zen, K. Suzuki, M. Ejrnaes, S. Pagano, R. Cristiano, M. Ohkubo, Subnanosecond time response of large-area superconducting stripline detectors for keV molecular ions. Appl. Phys. Lett. 94, 212502-1–212502-3 (2009)

    Article  ADS  Google Scholar 

  5. R. Krishnan, C. David, P.K. Ajikumar, S. Dash, A.K. Tyagi, V. Jayaram, B. Raj, Reactive pulsed laser deposition and characterization of niobium nitride thin films. Surf. Coat. Technol. 206, 1196–1202 (2011)

    Article  Google Scholar 

  6. K. Vasu, M.G. Krishna, K.A. Padmanabhan, Effect of Nb concentration on the structure, mechanical, optical, and electrical properties of nano-crystalline Ti1−x Nbx N thin films. J. Mater. Sci. 47, 3522–3528 (2012)

    Article  ADS  Google Scholar 

  7. M.A.A. Mamun, A.H. Farha, Y. Ufuktepe, H.E. Elsayed-Ali, A.A. Elmustafa, Investigation of the crystal structure on the nanomechanical properties of pulsed laser deposited niobium nitride thin films. J. Mater. Res. 27, 1725–1731 (2012)

    Article  Google Scholar 

  8. C.V. Falub, G. Thorwarth, C. Affolter, U. Müller, C. Voisard, R. Hauert, Quantitative in vitro method to predict the adhesion lifetime of diamond-like carbon thin films on biomedical implants. Acta Biomater. 5, 3086–3097 (2009)

    Article  Google Scholar 

  9. W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19, 3–20 (2004)

    Article  ADS  Google Scholar 

  10. J.E. Alfonso, J. Buitrago, J. Torres, J.F. Marco, B. Santos, Influence of fabrication parameters on crystallization, microstructure, and surface composition of NbN thin films deposited by RF magnetron sputtering. J. Mater. Sci. 45, 5528–5533 (2010)

    Article  ADS  Google Scholar 

  11. P. Periasamy, J.J. Berry, A.A. Dameron, J.D. Bergeson, D.S. Ginley, R.P. O’Hayre, P.A. Parilla, Fabrication and characterization of MIM diodes based on Nb/Nb2O5 via a rapid screening technique. Adv. Mater. 23, 3080–3085 (2011)

    Article  Google Scholar 

  12. B. Subramanian, R. Ananthakumar, M. Jayachandran, Effect of substrate temperature on the properties of reactively sputtered TiN/NbN multilayers. Cryst. Res. Technol. 46, 1273–1282 (2011)

    Article  Google Scholar 

  13. P. Lee-Sullivan, Influence of cooling rate on stress relaxation response of strained PVDF film. Mater. Res. Innov. 10, 124–126 (2006)

    Article  Google Scholar 

  14. Y.X. Wang, A. Aljaafari, Y. Ju, W. Gao, Mechanical property of solid ZrO powder enhanced Au–Ni coating. Mater. Res. Innov. 18, 1132–1136 (2014)

    Google Scholar 

  15. W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)

    Article  ADS  Google Scholar 

  16. P.G. Sanders, J.A. Eastman, J.R. Weertman, Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Mater. 45, 4019–4025 (1997)

    Article  Google Scholar 

  17. R.W. Rice, Limitations of pore-stress concentrations on the mechanical properties of porous materials. J. Mater. Sci. 32, 4731–4736 (1997)

    Article  ADS  Google Scholar 

  18. H.S. Kim, M.B. Bush, The effects of grain size and porosity on the elastic modulus of nanocrystalline materials. Nanostruct. Mater. 11, 361–367 (1999)

    Article  Google Scholar 

  19. S. Bagheri, M. Guagliano, Review of shot peening processes to obtain nanocrystalline surfaces in metal alloys. Surf. Eng. 25, 3–14 (2009)

    Article  Google Scholar 

  20. A. Loucif, R.B. Figueiredo, T. Baudin, F. Brisset, R. Chemam, T.G. Langdon, Ultrafine grains and the Hall–Petch relationship in an Al–Mg–Si alloy processed by high-pressure torsion. Mater. Sci. Eng., A 532, 139–145 (2012)

    Article  Google Scholar 

  21. A. Pundt, E. Nikitin, P. Pekarski, R. Kirchheim, Adhesion energy between metal films and polymers obtained by studying buckling induced by hydrogen. Acta Mater. 52, 1579–4587 (2004)

    Article  Google Scholar 

  22. Y.L. Wang, Z. Lin, J.P. Lin, J.H. Peng, G.L. Chen, Influence of sample surface condition on nano indentation experiment. Rare Met. 21, 131–132 (2002)

    Google Scholar 

  23. W.G. Jiang, J.J. Su, X.Q. Feng, Effect of surface roughness on nanoindentation test of thin films. Eng. Fract. Mech. 75, 4965–4972 (2008)

    Article  Google Scholar 

  24. L. Chen, A. Ahadi, J.M. Zhou, J.E. Ståhl, Modeling effect of surface roughness on nanoindentation tests. Proc. CIRP CMMO 8, 334–339 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Technology R&D Program with No. 2011BAK15B07.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Cao, W.H., Tao, X.F. et al. Structural and nanomechanical characterization of niobium films deposited by DC magnetron sputtering. Appl. Phys. A 122, 505 (2016). https://doi.org/10.1007/s00339-016-9990-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9990-1

Keywords

Navigation