Skip to main content

Advertisement

Log in

Photo-electrochemical studies of chemically deposited nanocrystalline meso-porous n-type TiO2 thin films for dye-sensitized solar cell (DSSC) using simple synthesized azo dye

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanocrystalline titanium dioxide (TiO2) thin films were deposited by successive ionic layer adsorption and reaction method onto fluorine doped tin oxide coated glass substrate at room temperature (300 K). Titanium trichloride and sodium hydroxide were used as cationic and anionic sources, respectively. The as-deposited and annealed films were characterized for structural, morphological, optical, electrical and wettability properties. The photoelectrochemical study of TiO2 sensitized with a laboratory synthesized organic dye (azo) was evaluated in the polyiodide electrolyte at 40 mW cm−2 light illumination intensity. The photovoltaic characteristics show a fill factor of 0.24 and solar conversion efficiency value of 0.032 % for a TiO2 thickness of 0.96 µm as compared to efficiency of 0.014 % for rose Bengal of the same thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Gratzel, The advent of mesoscopic injection solar cells. Prog. Photovolt. Res. Appl. 5, 429–442 (2006)

    Article  Google Scholar 

  2. B.O. Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346), 737–740 (1991)

    Article  ADS  Google Scholar 

  3. M.K. Nazeeruddin, A. Kay, I. Rodicio, H. Baker, E. Mueller, P. Liska, N. Vlachopoulos, M. Graetzel, Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′- dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl, Br, I, CN, and SCN) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc. 115, 6382–6390 (1993)

    Article  Google Scholar 

  4. Y.S. Yen, H.H. Chou, Y.C. Chen, C.Y. Hsu, J.T. Lin, Recent developments in molecule-based organic materials for dye-sensitized solar cells. J. Mater. Chem. 22, 8734–8747 (2012)

    Article  Google Scholar 

  5. K. Hara, M. Kurashige, S. Ito, A. Shinpo, S. Suga, K. Sayama, H. Arakawa, Novel polyene dyes for highly efficient dye-sensitized solar cells. Chem. Commun. 2, 252–253 (2003)

    Article  Google Scholar 

  6. K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, Molecular design of coumarin dyes for efficient dye-sensitized solar cells. J. Phys. Chem. B 107(2), 597–606 (2003)

    Article  Google Scholar 

  7. S. Kim, J.K. Lee, S.O. Kang, J. Ko, J.H. Yum, S. Fantacci, F. De Angelis, D. Di Censo, M.K. Nazeeruddin, M. Grätzel, Molecular engineering of organic sensitizers for solar cell applications. J. Am. Chem. Soc. 128, 16701–16707 (2006)

    Article  Google Scholar 

  8. W.M. Campbell, K.W. Jolley, P. Wagner, K. Wagner, P.J. Walsh, K.C. Gordon, L. Schmidt-Mende, M.K. Nazeeruddin, Q. Wang, M. Grätzel, D.L. Officer, Highly efficient porphyrin sensitizers for dye-sensitized solar cells. J. Phys. Chem. C 111(32), 11760–11762 (2007)

    Article  Google Scholar 

  9. S.S. Pandey, T. Inoue, N. Fujikawa, Y. Yamaguchi, S. Hayase, Alkyl and fluoro-alkyl substituted squaraine dyes: a prospective approach towards development of novel NIR sensitizers. Thin Solid Films 519(3), 1066 (2010)

    Article  ADS  Google Scholar 

  10. H.N. Tian, X.C. Yang, R.K. Chen, Y.Z. Pan, L. Li, A. Hagfeldt, L.C. Sun, Phenothiazine derivatives for efficient organic dye-sensitized solar cells. Chem. Commun. 3741–3743 (2007)

  11. H.N. Tian, X.C. Yang, J.Y. Cong, R.K. Chen, C. Teng, J. Liu, Y. Hao, L. Wang, L.C. Sun, Effect of different electron donating groups on the performance of dye-sensitized solar cells. Dyes Pigment. 84, 62 (2010)

    Article  Google Scholar 

  12. S.S. Park, Y.S. Won, Y.C. Choi, J.H. Kim, Molecular design of organic dyes with double electron acceptor for dye-sensitized solar cell. Energy Fuels 23(7), 3732–3736 (2009)

    Article  Google Scholar 

  13. Z.B. Xie, A. Midya, K.P. Loh, S. Adams, D.J. Blackwood, J. Wang, X.J. Zhang, Z.K. Chen, Highly efficient dye-sensitized solar cells using phenothiazine derivative organic dyes. Prog. Photovolt. Res. Appl. 18(8), 573–581 (2010)

    Article  Google Scholar 

  14. W.J. Wu, J.B. Yang, J.L. Hua, J. Tang, L. Zhang, Y.T. Long, H. Tian, Efficient and stable dye-sensitized solar cells based on phenothiazine sensitizers with thiophene units. J. Mater. Chem. 20, 1772–1779 (2010)

    Article  Google Scholar 

  15. T. Horiuchi, H. Miura, K. Sumioka, S. Uchida, High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. J. Am. Chem. Soc. 126, 12218–12219 (2004)

    Article  Google Scholar 

  16. S. Ito, S.M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M.K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida, M. Grätzel, High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness. Adv. Mater. 18(9), 1202–1205 (2006)

    Article  Google Scholar 

  17. S. Ito, H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte, P. Péchy, M. Grätzel, High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. Chem. Commun. 41, 5194–5196 (2008)

    Article  Google Scholar 

  18. W. Zeng, Y. Cao, Y. Bai, Y. Wang, Y. Shi, M. Zhang, F. Wang, C. Pan, P. Wang, Efficient dye-sensitized solar cells with an organic photosensitizer featuring orderly conjugated ethylenedioxythiophene and dithienosilole blocks. Chem. Mater. 22, 1915–1925 (2010)

    Article  Google Scholar 

  19. M. Ye, X. Wen, M. Wang, J. Iocozzia, N. Zhang, C. Lin, Z. Lin, Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater. Today 13(18), 155–162 (2015)

    Article  Google Scholar 

  20. A. Yella, R.H. Baker, B.F.E. Curchod, N. Ashari Astani, J. Teuscher, L.E. Polander, S. Mathew, J.E. Moser, I. Tavernelli, U. Rothlisberger, M. Grätzel, M.K. Nazeeruddin, J. Frey, Molecular engineering of a fluorene donor for dye-sensitized solar cells. Chem. Mater. 25, 2733–2739 (2013)

    Article  Google Scholar 

  21. H.M. Pathan, C.D. Lokhande, Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method. Bull. Mater. Sci. 27(2), 85–111 (2004)

    Article  Google Scholar 

  22. L. Zhang, J.M. Cole, P.G. Waddell, K.S. Low, X. Liu, Relating electron donor and carboxylic acid anchoring substitution effects in azo dyes to dye-sensitized solar cell performance. ACS Sustain. Chem. Eng. 1, 1440–1452 (2013). doi:10.1021/sc400183t

    Article  Google Scholar 

  23. S.B. Jambure, G.S. Gund, D.P. Dubal, S.S. Shinde, C.D. Lokhande, Cost effective facile synthesis of TiO2 nanograins for flexible DSSC application using rose bengal dye. Electron. Mater. Lett. 10(5), 945 (2014)

    Article  ADS  Google Scholar 

  24. X. Wang, G. Liu, L. Wang, J. Pan, G.Q. Max, G.Q.M. Lu, H.M. Cheng, TiO2 films with oriented anatase 001 facets and their photoelectrochemical behavior as CdS nanoparticle sensitized photoanodes. J. Mater. Chem. 21, 869–873 (2011)

    Article  Google Scholar 

  25. S.S. Mali, P.S. Shinde, C.A. Betty, P.N. Bhosale, W.J. Lee, P.S. Patil, Nanocoral architecture of TiO2 by hydrothermal process: synthesis and characterization. Appl. Surf. Sci. 257, 9737–9746 (2011)

    Article  ADS  Google Scholar 

  26. H.C. Choi, Y.M. Jung, S.B. Kim, Characterization of Raman spectra of size-selected TiO2 nanoparticles by two-dimensional correlation spectroscopy. Bull. Korean Chem. Soc. 25(3), 426–428 (2004)

    Article  Google Scholar 

  27. O. Manuel, J.V. Garcia-Ramos, C.J. Serna, J. Am. Ceram. Soc. 75, 2010–2012 (1992)

    Article  Google Scholar 

  28. A.H. Mayabadi, A.H. Mayabadi, V.S. Waman, M.M. Kamble, S.S. Ghosha, B.B. Gabhalea, S.R. Rondiya, A.V. Rokade, S.S. Khadtare, V.G. Sathe, H.M. Pathan, S.W. Gosavi, S.R. Jadkar, Evolution of structural and optical properties of rutile TiO2 thin films synthesized at room temperature by chemical bath deposition method. J. Phys. Chem. Solids (2013). doi:10.1016/j.jpcs.2013.09.008i

    Google Scholar 

  29. I. Justicia, P. Ordejon, G. Canto, J.L. Mozos, J. Fraxedas, G.A. Battiston, R. Gerbasi, A. Figueras, Designed self-doped titanium oxide thin films for efficient visible-light photocatalysis. Adv. Mater. 14, 1399 (2002)

    Article  Google Scholar 

  30. M.A. Henderson, Surf. Sci. Rep. 66, 185–297 (2011)

    Article  ADS  Google Scholar 

  31. T. Leshuk, R. Parviz, P. Everett, H. Krishnakumar, R.A. Varin, F. Gu, Photocatalytic Activity of Hydrogenated TiO2. ACS Appl. Mater. Interfaces 5, 1892–1895 (2013)

    Article  Google Scholar 

  32. A.A. Sharma, M. Kasem, E. Ali, M.E. Moustafa, Synthesis and characterization of some new azo compounds based on 2,4-dihydroxy benzoic acid. J. Basic Environ. Sci. 1, 76–85 (2014)

    Google Scholar 

  33. A.M. More et al., Liquefied petroleum gas (LPG) sensor properties of interconnected web-like structured sprayed TiO2 films. Sensors Actuators B Chem. 129(2), 671–677 (2008)

    Article  Google Scholar 

  34. M. Anpo, P. V. Kamat (eds), Environmentally benign photocatalysts, nanostructure sci. and tech., Springer Sci and Bus. Media LLC, (2010) Nature

  35. Y.-H. Chang, C.-M. Liu, C. Chen, H.-E. Cheng, The effect of geometric structure on photoluminescence characteristics of 1-DTiO2 nanotubes and 2-DTiO2 films fabricated by atomic layer deposition. J. Electrochem. Soc. 159(7), D401–D405 (2012)

    Article  Google Scholar 

  36. Y. Lei, L.D. Zhang, G.W. Meng, G.H. Li, X.Y. Zhang, C.H. Liang, W. Chen, S.X. Wang, Appl. Phys. Lett. 78, 1125 (2001)

    Article  ADS  Google Scholar 

  37. N. Koide, A. Islam, Y. Chiba, L. Han, Improvement of efficiency of dye-sensitized solar cells based on analysis of equivalent circuit. J. Photochem. Photobiol. A Chem. 182, 296–305 (2006)

    Article  Google Scholar 

  38. Q. Wang, J.-E. Moser, M. Grätzel, Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J. Phys. Chem. B 109, 14945–14953 (2005)

    Article  Google Scholar 

  39. R. Zhou, Q. Zhang, E. Uchaker, J. Lan, M. Yin, G. Cao, Mesoporous TiO2 beads for high efficiency CdS/CdSe quantum dot co-sensitized solar cells. J. Mater. Chem. A 2, 2517–2525 (2014)

    Article  Google Scholar 

  40. S.A. Pawar, R.S. Devan, D.S. Patil, V.V. Burungale, T.S. Bhat, S.S. Mali, S.W. Shin, J.E. Ae, C.K. Hong, Y.R. Ma, Hydrothermal growth of photoelectrochemically active titaniumdioxide cauliflower-like nanostructures. Electrochim. Acta 117, 470–479 (2014)

    Article  Google Scholar 

  41. L. Zhang, J.M. Cole, P.G. Waddell, K.S. Low, X. Liu, Relating electron donor and carboxylic acid anchoring substitution effects in azo dyes to dye-sensitized solar cell performance. ACS Sustain. Chem. Eng. 1, 1440–1452 (2013)

    Article  Google Scholar 

  42. K. Nakajima, K. Ohta, H. Katayanagi, K. Mitsuke, Photoexcitation and electron injection processes in azo dyes adsorbed on nanocrystalline TiO2 films. Chem. Phys. Lett. 510, 228–233 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Thin Film Physics Laboratory, Department of Physics, Shivaji University, Kolhapur, (M.S.) India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. G. Ezema.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezema, C.G., Nwanya, A.C., Ezema, B.E. et al. Photo-electrochemical studies of chemically deposited nanocrystalline meso-porous n-type TiO2 thin films for dye-sensitized solar cell (DSSC) using simple synthesized azo dye. Appl. Phys. A 122, 435 (2016). https://doi.org/10.1007/s00339-016-9965-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9965-2

Keywords

Navigation