Skip to main content
Log in

Dielectric relaxation and conduction mechanisms in sprayed TiO2 thin films as a function of the annealing temperature

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The electrical properties of TiO2 thin films deposited by chemical spray pyrolysis onto Si substrates were investigated in the metal–oxide–semiconductor (MOS) configuration using current–voltage characteristics and impedance spectroscopy. The electrical properties were analyzed in relation to the changes in microstructure induced during annealing in air up to a temperature of 950 °C. Anatase to rutile transformation started after annealing at 800 °C, and at 950 °C, only the rutile phase was present. The dielectric relaxation strongly depended upon the microstructure of TiO2 with the dielectric constant for the anatase phase between 45 and 50 and that for the rutile phase 123. Leakage current was reduced by three orders of magnitude after annealing at 700 °C due to the densification of the TiO2 film. A double-logarithmic plot of the current–voltage characteristics showed a linear relationship below 0.12 V consistent with Ohmic conduction, while space-charge-limited conduction mechanism as described by Child’s law dominated for bias voltages above 0.12 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 89, 5243 (2001)

    Article  ADS  Google Scholar 

  2. B. Pedro, M. Rodrigo, P. Lui, F. Elvira, Transparent Oxide Electronics: From Materials to Devices (Wiley, Chichester, 2012)

    Google Scholar 

  3. M.C. Sekhar, P. Kondaiah, G.M. Rao, S.V.J. Chandra, S. Uthanna, Superlattices Microstruct. 62, 68 (2013)

    Article  ADS  Google Scholar 

  4. R. Sing, R. Paily, A. DasGupta, N. DasGupta, P. Misra, L.M. Kukreja, Semicond. Sci. Technol. 20, 38 (2005)

    Article  ADS  Google Scholar 

  5. W. Yang, J. Marino, A. Monson, C.A. Wolden, Semicond. Sci. Technol. 21, 1573 (2006)

    Article  ADS  Google Scholar 

  6. L.H. Chong, K. Mallik, C.H. de Groot, R. Kersting, J. Phys.: Condens. Matter 18, 645 (2006)

    ADS  Google Scholar 

  7. H. Xue, W. Chen, C. Liu, X. Kong, P. Qu, Z. Liu, J. Zhou, L. Shen, Z. Zhong, S. Ruan, in Proceedings of the 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems Sanya, China 108 (2008)

  8. J.C. Tinoco, M. Estrada, B. In˜iguez, A. Cerdeira, Microelectron. Reliab. 48, 370 (2008)

    Article  Google Scholar 

  9. P. Walke, R. Bouregba, A. Lefevre, G. Parat, F. Lallemand, F. Voiron, B. Mercey, U. Lüders, J. Appl. Phys. 115, 094103 (2014)

    Article  ADS  Google Scholar 

  10. M.-K. Lee, J.-J. Huang, T.-S. Wu, Semicond. Sci. Technol. 20, 519 (2005)

    Article  ADS  Google Scholar 

  11. S. Chakraborty, M.K. Bera, S. Bhattacharya, C.K. Maiti, Current conduction mechanism in TiO2 gate dielectrics. Microelectron. Eng. 81, 188 (2005)

    Article  Google Scholar 

  12. S. Aksoy, Y. Caglar, J. Alloys Compd. 613, 330 (2014)

    Article  Google Scholar 

  13. A. Bengi, U. Aydemir, S. Altındal, Y. Ozen, S. Ozcelik, J. Alloys Compd. 505, 628 (2010)

    Article  Google Scholar 

  14. D. Mardare, G.I. Rusu, J. Non Cryst. Solids 356, 1395 (2010)

    Article  ADS  Google Scholar 

  15. S. Kim, H.Y. Jeong, S.-Y. Choi, Y.-K. Choi, Appl. Phys. Lett. 97, 033508 (2010)

    Article  ADS  Google Scholar 

  16. L.-E. Yu, S. Kim, M.-K. Ryu, S.-Y. Choi, Y.-K. Choi, IEEE 29, 331 (2008)

    Google Scholar 

  17. P.H. Wöbkenberg, T. Ishwara, J. Nelson, D.D.C. Bradley, S.A. Haque, T.D. Anthopoulos, Appl. Phys. Lett. 96, 082116 (2010)

    Article  ADS  Google Scholar 

  18. J.B. Naceur, M. Gaidi, F. Bousbih, R. Mechiakh, R. Chtourou, Curr. Appl. Phys. 12, 422 (2012)

    Article  ADS  Google Scholar 

  19. M. Es-Souni, I. Oja, M. Krunks, J. Mater. Sci.: Mater. Electron. 15, 341 (2004)

    Google Scholar 

  20. N.R. Mathews, E.R. Morales, M.A. Corte´s-Jacome, J.A.T. Antonio, Sol. Energy 83, 1499 (2009)

    Article  ADS  Google Scholar 

  21. C.H. Chen, E.M. Kelder, J. Schoonman, Thin Solid Films 342, 35 (1999)

    Article  ADS  Google Scholar 

  22. K. Otto, A. Katerski, A. Mere, O. Volobujeva, M. Krunks, Thin Solid Films 519, 3055 (2011)

    Article  ADS  Google Scholar 

  23. A. O. Juma, I. Oja Acik, V. Mikli, A. Mere, M. Krunks, in Thin Solid Films (2015) in press

  24. A. Oja, M. Mere, C.-H. Krunks, M. Solterbeck, Es-Souni. Solid State Phenom. 99–100, 259 (2004)

    Article  Google Scholar 

  25. Y. Cui, J. Sun, Z. Hu, W. Yu, N. Xu, N. Xu, Z. Ying, J. Wu, Surf. Coat. Technol. 231, 180 (2013)

    Article  Google Scholar 

  26. N. Martin, C. Rousselot, D. Rondot, F. Palmino, R. Mercier, Thin Solid Films 300, 113 (1997)

    Article  ADS  Google Scholar 

  27. E. Barsoukov, J.R. McDonald, Impedance Spectroscopy, Theory: Experiments and Applications (Wiley, Hoboken, NJ, 2005)

    Book  Google Scholar 

  28. J.Y. Kim, H.S. Jung, J.H. No, J.-R. Kim, K.S. Hong, J. Electroceramics 16, 447 (2006)

    Article  Google Scholar 

  29. G.A. Kontos, A.L. Soulintzis, P.K. Karahaliou, G.C. Psarras, S.N. Georga, C.A. Krontiras, M.N. Pisanias, Express Polym. Lett. 1, 781 (2007)

    Article  Google Scholar 

  30. K. Vydianathan, G. Nuesca, G. Peterson, E.T. Eisenbraun, A.E. Kaloyeros, J.J. Sullivan, B. Han, J. Mater. Res. 16, 1838 (2001)

    Article  ADS  Google Scholar 

  31. R.A. Parker, J.S. Wasilik, Phys. Rev. 120, 1631 (1960)

    Article  ADS  Google Scholar 

  32. J.K. Jonscher, J. Phys. D Appl. Phys. 32, R57 (1999)

    Article  ADS  Google Scholar 

  33. K. Funke, R.D. Banhatti, Solid State Sci. 10, 790–803 (2008)

    Article  ADS  Google Scholar 

  34. A.A.A. Youssef, Z. Naturforsch. 57a, 263–269 (2002)

    ADS  Google Scholar 

  35. C. Cramer, K. Funke, T. Saatkamp, D. Wilmer, M.D. Ingram, Z. Naturforsch. 50a, 613–623 (1995)

    ADS  Google Scholar 

  36. S.C. Sun, T.F. Chen,   IEDM '94. Technical Digest: International Electron Devices Meeting, 1994 (IEEE, San Francisco, CA, 1994), pp. 333–336

  37. F.-C. Chiu, Adv. Mater. Sci. Eng. 2014, ID 578168 (2014)

  38. F.-C. Chiu, H.-W. Chou, J.Y.-M. Lee, J. Appl. Phys. 97, 103503 (2005)

    Article  ADS  Google Scholar 

  39. M.A. Lampert, P. Mark, Current Injection in Solids (Academic press, NY, 1970)

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Estonian Ministry of Education and Research under target financing project IUT19-4, TUT base Financing Project B24 and by the European Union through the European Regional Development Fund Projects: TK114 “Mesosystems: Theory and Applications” (3.2.0101.11-0029). Senior Researcher V. Mikli is appreciated for the SEM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Juma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juma, A., Acik, I.O., Mere, A. et al. Dielectric relaxation and conduction mechanisms in sprayed TiO2 thin films as a function of the annealing temperature. Appl. Phys. A 122, 359 (2016). https://doi.org/10.1007/s00339-016-9874-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9874-4

Keywords

Navigation