Skip to main content
Log in

Fabrication of GaInPSb quaternary alloy nanowires and its room temperature electrical properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

GaInPSb quaternary alloy nanowires were first synthesized via a simple chemical vapor deposition method. The synthesized nanowires’ length can reach up to 20 μm and diameter ranging from 50 to 100 nm. Raman measurements and high-resolution transmission electron microscopy image illustrate that the as-grown nanowires have a high crystallinity. Room temperature near-infrared photodetector based on as-prepared GaInPSb nanowires was also built for the first time. It shows a good contact with the electrode, and the device has a strong light response to light illumination. This novel near-infrared photodetector may find promising applications in integrated infrared photodetection, information communication, and processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Eymery, L.F. Feiner, A. Forchel, M. Scheffler, Nanowire-based one-dimensional electronics. Mater. Today 9(10), 28–35 (2006)

    Article  Google Scholar 

  2. M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber, Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415(6872), 617–620 (2002)

    Article  ADS  Google Scholar 

  3. B.N. Sverdlov, InGaSbAs/GaAlSbAs heterostructures for mid-infrared injection lasers, in Joint Soviet-American Workshop on the Physics of Semiconductor Lasers, vol 240(1) (AIP Publishing, 1991), p. 95

  4. A. Pan, W. Zhou, E.S.P. Leong, R. Liu, H. Chin Alan, B. Zou, C.Z. Ning, Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip. Nano Lett. 9(2), 784–788 (2009)

    Article  ADS  Google Scholar 

  5. D. Xiangfeng, H. Yu, A. Ritesh, C.M. Lieber, Single-nanowire electrically driven lasers. Nature 421(6920), 241–245 (2003)

    Article  Google Scholar 

  6. K. Tomioka, M. Yoshimura, T. Fukui, A III–V nanowire channel on silicon for high-performance vertical transistors. Nature 488(7410), 189–192 (2012)

    Article  ADS  Google Scholar 

  7. P. Peumans, A. Yakimov, S.R. Forrest, Small molecular weight organic thin-film photodetectors and solar cells. J. Appl. Phys. 93(7), 3693–3723 (2003)

    Article  ADS  Google Scholar 

  8. J. Xu, L. Ma, P. Guo, X. Zhuang, X. Zhu, W. Hu, X. Duan, A. Pan, Room-temperature dual-wavelength lasing from single-nanoribbon lateral heterostructures. J. Am. Chem. Soc. 134(30), 12394–12397 (2012)

    Article  Google Scholar 

  9. H. Tan, C. Fan, L. Ma, X. Zhang, P. Fan, Y. Yang, W. Hu, H. Zhou, X. Zhuang, X. Zhu, A. Pan, Single-crystalline InGaAs nanowires for room-temperature high-performance near-infrared photodetectors. Nano-Micro Lett. 8(1), 29–35 (2016)

    Article  Google Scholar 

  10. L. Ma, X. Zhang, H. Li, H. Tan, Y. Yang, Y. Xu, W. Hu, X. Zhu, X. Zhuang, A. Pan, Bandgap-engineered GaAsSb alloy nanowires for near-infrared photodetection at 1.31 μm. Semiconduct. Sci. Technol. 30(10), 105033 (2015)

    Article  ADS  Google Scholar 

  11. P. Ren, W. Hu, Q. Zhang, X. Zhu, X. Zhuang, L. Ma, X. Fan, H. Zhou, L. Liao, X. Duan, A. Pan, Band-selective infrared photodetectors with complete-composition-range InAsxP1−x alloy nanowires. Adv. Mater. 26(44), 7444–7449 (2014)

    Article  Google Scholar 

  12. L. Ma, W. Hu, Q. Zhang, P. Ren, X. Zhuang, H. Zhou, J. Xu, H. Li, Z. Shan, X. Wang, L. Liao, H. Xu, A. Pan, Room-temperature near-infrared photodetectors based on single heterojunction nanowires. Nano Lett. 14(2), 694–698 (2014)

    Article  ADS  Google Scholar 

  13. W. Wu, S. Corzine, A.M. Bratkovski et al., Nanowire-based photodetectors. U.S. Patent 7,720,326, 18 May 2010

  14. E.M. Gallo, G. Chen, M. Currie, T. Mcguckin, P. Prete, Picosecond response times in GaAs/AlGaAs core/shell nanowire-based photodetectors. Appl. Phys. Lett. 98(24), 241113 (2011)

    Article  ADS  Google Scholar 

  15. L. Zhe, C. Gui, L. Bo, G. Yu, H. Huang, D. Chen, G. Shen, Fabrication of high-quality ZnTe nanowires toward high-performance rigid/flexible visible-light photodetectors. Opt. Express 21(6), 7799–7810 (2013)

    Article  ADS  Google Scholar 

  16. T. Zhai, X. Fang, M. Liao, X. Xu, L. Li, B. Liu, Y. Koide, Y. Ma, J. Yao, Y. Bando, D. Golberg, Fabrication of high-quality In2Se3 nanowire arrays toward high-performance visible-light photodetectors. ACS Nano 4(3), 1596–1602 (2010)

    Article  Google Scholar 

  17. D. Pan, E. Towe, S. Kennerly, Normal-incidence intersubband (In, Ga)As/GaAs quantum dot infrared photodetectors. Appl. Phys. Lett. 73(14), 1937–1939 (1998)

    Article  ADS  Google Scholar 

  18. J. Miao, W. Hu, N. Guo, Z. Lu, X. Zou, L. Liao, S. Shi, P. Chen, Z. Fan, J.C. Ho, T. Li, X. Chen, W. Lu, Single InAs nanowire room-temperature near-infrared photodetectors. ACS Nano 8(4), 3628–3635 (2014)

    Article  Google Scholar 

  19. D. Chandra, D.F. Weirauch, T.C. Penn, Integrated infrared detection system. US, US 6140145 A. 2000

  20. A. Makoto, K. Yoshikazu, Ultrahigh-sensitivity infrared detection system using an InGaAs p-i-n photodiode with low dielectric polarization noise. Opt. Lett. 37(12), 2235–2237 (2012)

    Article  Google Scholar 

  21. D.H. Jaw, G.B. Stringfellow, Long wavelength lattice dynamics for quaternary alloys: GaInPSb and AlGaAsSb. J. Appl. Phys. 72(9), 4265–4268 (1992)

    Article  ADS  Google Scholar 

  22. K. Nakajima, A. Yamaguchi, K. Akita, T. Kotani, Composition dependence of the band gaps of In1−xGaxAs1−yPy quaternary solids lattice matched on InP substrates. J. Appl. Phys. 49(12), 5944–5950 (1978)

    Article  ADS  Google Scholar 

  23. T. Umezawa, K. Akahane, N. Yamamoto, A. Kanno, Highly sensitive photodetector using ultra-high-density 1.5 μm quantum dots for advanced optical fiber communications. IEEE J. Sel. Top. Quantum Electron. 20(6), 147–153 (2014)

    Article  Google Scholar 

  24. C. Grasse, R. Meyer, U. Breuer, G. Böhm, M.C. Amann, Growth of various antimony-containing alloys by MOVPE. J. Cryst. Growth 310(23), 4835–4838 (2008)

    Article  ADS  Google Scholar 

  25. G.C. Osbourn, InAsSb strained-layer superlattices for long wavelength detector applications. J. Vac. Sci. Technol., B 2(2), 176–178 (1984)

    Article  Google Scholar 

  26. W. Xu, A. Chin, L. Ye, C. Ning, H. Yu, Charge transport and trap characterization in individual GaSb nanowires. J. Appl. Phys. 111(10), 104515 (2012)

    Article  ADS  Google Scholar 

  27. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89(11), 5815–5875 (2001)

    Article  ADS  Google Scholar 

  28. R. Borroff, R. Merlin, A. Chin, P. Bhattacharya, Raman scattering by optical phonons in In1−yAlyGazAs lattice matched to InP. Appl. Phys. Lett. 53(17), 1652–1653 (1988)

    Article  ADS  Google Scholar 

  29. Y.T. Cherng, D.H. Jaw, M.J. Jou, G.B. Stringfellow, Lattice vibration spectra of GaP1−xSbx and InP1−xSbx. J. Appl. Phys. 65(8), 3285–3288 (1989)

    Article  ADS  Google Scholar 

  30. R.P. Schneider Jr., E.D. Jones, J.A. Lott, R.P. Bryan, Photoluminescence linewidths in metalorganic vapor phase epitaxially grown ordered and disordered InAlGaP alloys. J. Appl. Phys. 72(11), 5397–5400 (1992)

    Article  ADS  Google Scholar 

  31. S. Hayashi, H. Kanamori, Raman scattering from the surface phonon mode in GaP microcrystals. Phys. Rev. B 26(26), 7079–7082 (1982)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51302078, 61501039), the Beijing Natural Science Foundation (2162017), the Initial funding for the Doctoral Program of BIGC (27170116005/039), and the Elite Program of BIGC (27170116004/019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guozhang Dai or Qiang Wan.

Additional information

Yadan Xu and Ruping Liu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Liu, R., Ma, L. et al. Fabrication of GaInPSb quaternary alloy nanowires and its room temperature electrical properties. Appl. Phys. A 123, 6 (2017). https://doi.org/10.1007/s00339-016-0590-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0590-x

Keywords

Navigation