Skip to main content
Log in

Field emission from Dirac and Weyl semimetals

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Based on theoretical investigation on characteristics of the field emission current of Dirac/Weyl semimetals, the dependence of the field emission current on the applied bias is deduced and studied. This theoretical study demonstrates that the field emission current of a Dirac semimetal is much smaller than that of a conventional material when they have similar carrier parameters. This makes Dirac semimetal a better candidate for gate/base electrode material than gold and other conventional metals for an ultra-thin gate oxide metal–oxide–semiconductor field effect transistor. The field emission current of a Dirac semimetal decreases with the effective electron mass, while it increases for a conventional material. This implies that such an effective mass dependence can be used as a simple criterion to probe a Dirac semimetal in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Cao, S. Liang, C. Zhang, Y. Liu, J. Huang, Z. Jin et al., Nat. Commun. 6, 7779 (2015)

    Article  ADS  Google Scholar 

  2. Z.K. Liu, B. Zhou, Y. Zhang, Z.J. Wang, H.M. Weng, D. Prabhakaran et al., Science 343, 864 (2014)

    Article  ADS  Google Scholar 

  3. S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Büchner, R.J. Cava, Phys. Rev. Lett. 113, 027603 (2014)

    Article  ADS  Google Scholar 

  4. M. Neupane, S.Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu et al., APS Meet. Abstr. 1, 43008 (2014)

    Google Scholar 

  5. M. Neupane, S.Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu et al., Nat. Commun. 5, 3786 (2014)

    ADS  Google Scholar 

  6. X. Wan, A.M. Turner, A. Vishwanath, S.Y. Savrasov, Phys. Rev. B 83, 205101 (2011)

    Article  ADS  Google Scholar 

  7. A.A. Burkov, L. Balents, Phys. Rev. Lett. 107, 127205 (2011)

    Article  ADS  Google Scholar 

  8. M. Kargarian, M. Randeria, N. Trivedi, Sci. Rep. 5, 12683 (2015)

    Article  ADS  Google Scholar 

  9. S.Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang et al., Science 349, 613 (2015)

    Article  ADS  Google Scholar 

  10. Z. Wang, Y. Sun, X.Q. Chen, C. Franchini, G. Xu, H. Weng et al., Phys. Rev. B 85, 195320 (2012)

    Article  ADS  Google Scholar 

  11. Z. Wang, H. Weng, Q. Wu, X. Dai, Z. Fang, Phys. Rev. B 88, 125427 (2013)

    Article  ADS  Google Scholar 

  12. G. Xu, H. Weng, Z. Wang, X. Dai, Z. Fang, Phys. Rev. Lett. 107, 186806 (2011)

    Article  ADS  Google Scholar 

  13. H. Weng, C. Fang, Z. Fang, B.A. Bernevig, X. Dai, Phys. Rev. X 5, 011029 (2015)

    Google Scholar 

  14. H. Weng, X. Dai, Z. Fang, J. Phys. Condens. Matter 28, 303001 (2016)

    Article  Google Scholar 

  15. S. Jeon, B.B. Zhou, A. Gyenis, B.E. Feldman, I. Kimchi, A.C. Potter et al., Nat. Mater. 13, 851 (2014)

    Article  ADS  Google Scholar 

  16. Z.K. Liu, J. Jiang, B. Zhou, Z.J. Wang, Y. Zhang, H.M. Weng et al., Nat. Mater. 13, 677 (2014)

    Article  ADS  Google Scholar 

  17. A. Hupfer, D. Hirsch, S. Schulze, Phys. Status Solidi B 152, 505 (1989)

    Article  ADS  Google Scholar 

  18. M.H. Din, R.D. Gould, Solid State Sci. Technol. 13, 93 (2005)

    Google Scholar 

  19. A.C. Potter, I. Kimchi, A. Vishwanath, Nat. Commun. 5, 5161 (2014)

    Article  ADS  Google Scholar 

  20. C.B. Duke, Tunneling in Solids (Academic Press, Cambridge, 1969)

    Google Scholar 

  21. R. Tsu, L. Esaki, Appl. Phys. Lett. 22, 562 (1973)

    Article  ADS  Google Scholar 

  22. Z.G. Chen, C. Zhang, Y. Zou, E. Zhang, L. Yang, M. Hong et al., Nano Lett. 15, 5830 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the National Natural Science Foundation of China (under Grant Nos. 61076102 and 61471035) and the Fundamental Research Funds for the Central Universities (under Grant Nos. 06500010 and 06105031).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling-Feng Mao or Gaofeng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, LF., Li, X., Ning, H. et al. Field emission from Dirac and Weyl semimetals. Appl. Phys. A 122, 870 (2016). https://doi.org/10.1007/s00339-016-0377-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0377-0

Keywords

Navigation