Skip to main content
Log in

Electromagnetic shielding effectiveness and mechanical properties of graphite-based polymeric films

  • Published:
Applied Physics A Aims and scope Submit manuscript

An Erratum to this article was published on 30 August 2016

Abstract

Modern electronics have nowadays evolved to offer highly sophisticated devices. It is not rare; however, their operation can be affected or even hindered by the surrounding electromagnetic radiation. In order to provide protection from undesired external electromagnetic sources and to ensure their unaffected performance, electromagnetic shielding is thus necessary. In this work, both the electromagnetic and mechanical properties of graphite-based polymeric films are studied. The investigated films show efficient electromagnetic shielding performance along with good mechanical stiffness for a certain graphite concentration. To the best of our knowledge, the present study illustrates for the first time both the electromagnetic shielding and mechanical properties of the polymer composite samples containing graphite filler at such high concentrations (namely 60–70 %). Our findings indicate that these materials can serve as potential candidates for several electronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X.C. Tong, Advanced Materials and Design for Electromagnetic Interference Shielding (Taylor & Francis Group, London, 2009)

    Google Scholar 

  2. S. Geetha, K.K.S. Kumar, C.R.K. Rao, M. Vijayan, D.C. Trivedi, J. Appl. Polym. Sci. 112, 2073–2086 (2009)

    Article  Google Scholar 

  3. S. Celozzi, R. Araneo, G. Lova, Electromagnetic Shielding (Wiley, New York, 2008)

    Book  Google Scholar 

  4. M. Suchea, I.V. Tudose, G. Tzagkarakis, G. Kenanakis, M. Katharakis, E. Drakakis, E. Koudoumas, Appl. Surf. Sci. 352, 151–154 (2015)

    Article  ADS  Google Scholar 

  5. A. Ameli, P.U. Jung, C.B. Park, Carbon 60, 379–391 (2013)

    Article  Google Scholar 

  6. J.-M. Thomassin, C. Jerome, T. Pardoen, C. Bailly, I. Huynen, C. Detrembleur, Mat. Sci. Eng. R 74, 211–232 (2013)

    Article  Google Scholar 

  7. M.H. Al-Saleh, W.H. Saadeh, U. Sundararaj, Carbon 60, 146–156 (2013)

    Article  Google Scholar 

  8. B. Hornbostel, P. Potschke, D. Kornfeld, J. Kotz, S.J. Roth, Nanostruct. Polym. Nanocompos. 3, 103–107 (2007)

    Google Scholar 

  9. P.C.P. Watts, W.K. Hsu, H.W. Kroto, D.R.M. Walton, Nano Lett. 3, 549–553 (2003)

    Article  ADS  Google Scholar 

  10. Y.L. Yang, M.C. Gupta, K.L. Dudley, R.W. Lawrence, Nano Lett. 5, 2131–2134 (2005)

    Article  ADS  Google Scholar 

  11. S.K. Hong, K.Y. Kim, T.Y. Kim, J.H. Kim, S.W. Park, J.H. Kim, B.J. Cho, Nanotechnology 23, 455704 (2012)

    Article  Google Scholar 

  12. H.M. Kim, K. Kim, C.Y. Lee, J. Joo, S.J. Cho, H.S. Yoon, D.A. Pejaković, J.W. Yoo, A.J. Epstein, Appl. Phys. Lett. 84, 589 (2004)

    Article  ADS  Google Scholar 

  13. M.J. O’Connell, Carbon Nanotubes: Properties and Applications (Taylor and Francis, London, 2006)

    Book  Google Scholar 

  14. G.A. Gelves, M.H. Al-Saleh, U. Sundararaj, J. Mater. Chem. 21, 829–836 (2010)

    Article  Google Scholar 

  15. V. Panwar, J.-O. Park, S.-H. Park, S. Kumar, R.M. Mehra, J. Appl. Polym. Sci. 115, 1306–1314 (2010)

    Article  Google Scholar 

  16. T. Kuilla, S. Bhadra, D. Yao, N.H. Kim, S. Bose, J.H. Le, Prog. Polym. Sci. 35, 1350–1375 (2010)

    Article  Google Scholar 

  17. M. Fang, K. Wang, H. Lu, Y. Yang, S. Nutt, J. Mater. Chem. 19, 7098–7105 (2009)

    Article  Google Scholar 

  18. F.M. Uhl, C.A. Wilkie, Polym. Degrad. Stab. 76, 111–122 (2002)

    Article  Google Scholar 

  19. R.K. Goyal, P.A. Jagadale, U.P. Mulik, J. Appl. Polym. Sci. 111, 2071–2077 (2009)

    Article  Google Scholar 

  20. R. Sengupta, M. Bhattacharya, S. Bandyopadhyay, A.K. Bhowmick, Prog. Polym. Sci. 36, 638–670 (2001)

    Article  Google Scholar 

  21. W.-P. Wang, C.-Y. Pan, Polymer 45, 3987–3995 (2004)

    Article  Google Scholar 

  22. D.-X. Yan, P.-G. Ren, H. Pang, Q. Fu, M.-B. Yang, Z.-M. Li, J. Mater. Chem. 22, 18772–18774 (2012)

    Article  Google Scholar 

  23. S. Maiti, N.K. Shrivastava, S. Suin, B.B. Khatua, ACS Appl. Mater. Interfaces 12, 4712–4724 (2013)

    Article  Google Scholar 

  24. G.A. Gelves, B. Lin, U. Sundararaj, J.A. Haber, Adv. Funct. Mater. 16, 2423–2430 (2006)

    Article  Google Scholar 

  25. M.H. Al-Saleh, G.A. Gelves, U. Sundararaj, Comp. Part A 42, 92–97 (2011)

    Article  Google Scholar 

  26. D.R. Smith, S. Schultz, P. Markos, C.M. Soukoulis, Phys. Rev. B 65, 195104 (2002)

    Article  ADS  Google Scholar 

  27. H. Chen, J. Zhang, Y. Bai, Y. Luo, L. Ran, Q. Jiang, J. Au Kong, Opt. Express 14, 12944–12949 (2006)

    Article  ADS  Google Scholar 

  28. J.L. Thomason, M.A. Vlug, Compos. A 27A, 477–484 (1996)

    Article  Google Scholar 

  29. J.L. Thomason, M.A. Vlug, G. Schipper, H.G.L.T. Krikor, Compos. A 27A, 1075–1084 (1996)

    Article  Google Scholar 

  30. A. Kelly, W.R. Tyson, J. Mech. Phys. Solids 13, 329–350 (1965)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Research Council under ERC Advanced Grant No. 320081 (PHOTOMETA). Work at Ames Laboratory was partially supported by the Department of Energy (Basic Energy Sciences, Division of Materials Sciences and Engineering) under Contract No. DE-AC02-07CH11358. Financial support by the EU-FET Graphene Flagship (Grant Agreement No: 604391) is also acknowledged. Author Z.V. acknowledges the FP7-REGPOT 2012-2013 (Grand Agreement No 316165). The authors also acknowledge Dr. S. Droulias for the employment of the retrieval method calculating the refractive index n and impedance ζ of the samples and for his useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Kenanakis.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00339-016-0373-4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kenanakis, G., Vasilopoulos, K.C., Viskadourakis, Z. et al. Electromagnetic shielding effectiveness and mechanical properties of graphite-based polymeric films. Appl. Phys. A 122, 802 (2016). https://doi.org/10.1007/s00339-016-0338-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0338-7

Keywords

Navigation