Skip to main content
Log in

Bio-inspired ZnO nanoparticles from Ocimum tenuiflorum and their in vitro antioxidant activity

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanobiotechnology is emerging as a rapid growing field with its applications in nanoscience and technology for the purpose of built-up new materials at the nanoregime. Nanoparticles produced by plant extracts are more stable, and the rate of synthesis is faster than that in the case of other organisms. In this paper we report the biosynthesis of zinc oxide nanoparticles (ZnO NPs). Structural, morphological, particle size, and optical properties of the synthesized nanoparticles have been characterized by using UV–Vis spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscope, energy-dispersive X-ray spectroscopy, atomic-force microscopy, zeta potential, X-ray diffraction, and photoluminescence intensity. The UV–Vis spectrum showed an absorption peak at 380 nm that reflects surface plasmon resonance. The optical measurements were attributed to the band gap 3.19 eV at pH 12. The zeta potential value of −36.4 eV revealed the surface charge of green synthesized ZnO NPs. The antioxidant activity was estimated by both 1,1-diphenyl-2-picrylhydrazyl and reducing power assay. Green synthesized ZnO NPs showed maximum inhibition (65.23 %) and absorbance (0.6 a.u). This approach offers environmentally beneficial alternative by eliminating hazardous chemicals and promotes pollution prevention by the production of nanoparticles in their natural environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Swetha, V. Nachiyar, Asian Pac. J. Trop. Biomed. 2, 953 (2012)

    Article  Google Scholar 

  2. S.J. Park, S.W. Lee, K.J. Lee, J.H. Lee, K.D. Kim, J.H. Jeong, J.H. Choi, Nanoscale Res. Lett. 5, 1570 (2010)

    Article  ADS  Google Scholar 

  3. W. Li, S. Seal, E. Megan, J. Ramsdell, K. Scammon, L. Lelong, L. Lachal, K.A. Richardson, J. Appl. Phys. 93, 9553 (2003)

    Article  ADS  Google Scholar 

  4. V.I. Parvulescu, B. Cojocaru, V. Parvulescu, R. Richards, Z. Li, C. Cadigan, P. Granger, P. Miquel, C. Hardacre, J. Catal. 25, 92 (2010)

    Article  Google Scholar 

  5. V.K. Shukla, R.S. Yadav, P. Yadav, A.C. Pandey, J. Hazard. Mater. 213, 161 (2012)

    Article  Google Scholar 

  6. S.M. Dizaj, F. Lotfipour, M. Barzegar-Jalali, M.H. Zarrintan, K. Adibkia, Mater. Sci. Eng. C 44, 278 (2014)

    Article  Google Scholar 

  7. P.C. Nagajyothi, T.V.M. Sreekanth, C.O. Tettey, Y.I. Jun, S.H. Mook, Bioorg. Med. Chem. Lett. 24, 4298 (2014)

    Article  Google Scholar 

  8. P.C. Nagajyothi, S. Cha, I.J. Yang, T.V.M. Sreekanth, K.J. Kim, H.M. Shi, J. Photochem. Photobiol. B 146, 10 (2015)

    Article  Google Scholar 

  9. H. AbdulSalam, R. Sivaraj, R. Venkatesh, Mater. Lett. 131, 16–18 (2014)

    Article  Google Scholar 

  10. D. Hofstetter, H. Morkoc, Proc. IEEE 98, 1255 (2010)

    Article  Google Scholar 

  11. L. Fu, Z. Fu, Ceram. Int. 41, 2492 (2015)

    Article  Google Scholar 

  12. J. Jayabharathi, I. JebaSingh, A. Arunpandiyan, C. Karunakaran, Spectrochim. Acta Part A 135, 264 (2015)

    Article  ADS  Google Scholar 

  13. M.P. Lu, J. Song, M.Y. Lu, M.T. Chen, Y. Gao, L.J. Chen, Z.L. Wang, Nano Lett. 9, 1223 (2009)

    Article  ADS  Google Scholar 

  14. T. Krishnakumar, R. Jayaprakash, N. Pinna, V.N. Singh, B.R. Mehta, A.R. Phani, Mater. Lett. 63, 242 (2009)

    Article  Google Scholar 

  15. R. Viswanatha, T.G. Venkatesh, C.C. Vidyasagar, Y. ArthobaNayaka, Arch. Appl. Sci. Res. 4, 480 (2012)

    Google Scholar 

  16. L. Yuzhen, G. Lin, X. Huibin, D. Lu, Y. Chunlei, W. Jiannong, G. Weikun, Y. Shihe, W. Ziyu, J. Appl. Phys. 99, 114302 (2006)

    Article  Google Scholar 

  17. S. Tachikawa, A. Noguchi, M. Hara, O. Odawara, H. Wada, J. Ceram. Process. Res. 12, 215 (2011)

    Google Scholar 

  18. Y. Xie, Y. Wang, T. Zhang, G. Ren, Z. Yang, J. Biomed. Sci. 19, 14 (2012)

    Article  Google Scholar 

  19. B. Mahitha, B.D.P. Raju, K. Mallikarjuna, C.N.D. Mahalakshmi, N.J. Sushma, J. Nano Sci. Nanotech. 15, 1101 (2015)

    Article  Google Scholar 

  20. K. Mallikarjuna, G. Narasimha, N.J. Sushma, G.R. Dillip, B.V.S. Reddy, B. Sreedhar, B.D.P. Raju, J. Nano Sci. Nanotech. 15, 1280 (2015)

    Article  Google Scholar 

  21. R. Konenkamp, L. Dloczik, K. Ernst, C. Olesch, Phys. E 14, 219 (2002)

    Article  Google Scholar 

  22. B. Kumar, K. Smita, L. Cumbal, A. Debut, Bioinorg. Chem. Appl. 2014, 523869 (2014)

    Google Scholar 

  23. A. Sharma, A. Meena, R. Meena, Int. J. Pharm. Tech. Res. 4, 176 (2012)

    Google Scholar 

  24. H. Morkoc, S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov, M. Burns, J. Appl. Phys. 76, 1363 (1994)

    Article  ADS  Google Scholar 

  25. L. Spanhel, M.A. Anderson, J. Am. Chem. Soc. 113, 2826 (1991)

    Article  Google Scholar 

  26. D.M. Bagnall, Y.F. Chen, M.Y. Shen, Z. Zhu, T. Goto, T. Yao, J. Cryst. Growth 605, 184 (1998)

    Google Scholar 

  27. D. Philip, C. Unni, Phys. E 43, 1318 (2011)

    Article  Google Scholar 

  28. N. Ahmad, S. Sharma, M.K. Alam, V.N. Singh, S.F. Shamsi, B.R. Mehta, A. Fatma, Colloids Surf. B. 81, 81 (2010)

    Article  Google Scholar 

  29. S.U. Yanpallewar, S. Rai, M. Kumar, S.B. Acharya, Pharmacol. Biochem. Behav. 79, 155 (2004)

    Article  Google Scholar 

  30. R.K. Jaggi, R. Madaan, B. Singh, Indian J. Exp. Biol. 41, 1329 (2003)

    Google Scholar 

  31. S. Godhwani, J.L. Godhwani, D.S. Vyas, J. Ethnopharmacol. 21, 153 (1987)

    Article  Google Scholar 

  32. W. Brand-Williams, M.E. Cuvelier, C. Berset, Lebensm. Wiss. U. Technol. 28, 25 (1995)

    Article  Google Scholar 

  33. M. Oyaizu, Jpn. J. Nutr. 7, 307 (1986)

    Article  Google Scholar 

  34. P.M. Aneesh, K.A. Vanaja, M.K. Jayaraj, in Nanophotonic Materials IV, ed. by Z. Gaburro,S. Cabrini. Proceedings of SPIE , vol. 6639, 66390J, 0277–786X/07/$18 (2007). doi:10.1117/12.730364

  35. K.C. Song, S.M. Lee, T.S. Park, B.S. Lee, Korean J. Chem. Eng. 26, 153 (2009)

    Article  Google Scholar 

  36. A. Callegari, D. Tonti, M. Chergui, Nano Lett. 3, 1565 (2003)

    Article  ADS  Google Scholar 

  37. Y.H. Ni, X.W. Wei, J.M. Hong, Y. Ye, Mater. Sci. Eng. B 121, 42 (2005)

    Article  Google Scholar 

  38. A. Mashrai, H. Khanam, R.N. Aljawfi, Arab. J. Chem. (2013) (in press)

  39. K. Vimala, S. Sundarraj, M. Paulpandi, S. Vengatesan, S. Kannan, Process Biochem. 49, 160 (2014)

    Article  Google Scholar 

  40. M.A. Kelm, M.G. Nair, G.M. Strasburg, W.D.L. De, Phytomedicine 7, 7 (2000)

    Article  Google Scholar 

  41. V. Prasad, D. Souza, C. Yadav, D.A.J. Shaikh, N. Vigneshwaran, Spectrochim. Acta Part A 65, 173 (2006)

    Article  ADS  Google Scholar 

  42. R. Kripal, A.K. Gupta, S.K. Mishra, R.K. Srivastava, A.C. Pandey, S.G. Prakash, Spectrochim. Acta Part A 76, 523 (2010)

    Article  ADS  Google Scholar 

  43. P. Tyagi, A.G. Vedeshwar, Bull. Mater. Sci. 24, 297 (2001)

    Article  Google Scholar 

  44. D. Gnanasangeetha, D. SaralaThambavani, Res. J. Mater. Sci. 1, 1 (2013)

    Google Scholar 

  45. K.D. Bhatte, D.N. Sawant, D.V. Pinjari, A.B. Pandit, B.M. Bhange, Mater. Lett. 77, 93 (2012)

    Article  Google Scholar 

  46. R. Zamari, A. Zakaria, H.A. Ahangar, M. Darroudi, A.K. Zak, G.P.C. Drummen, J. Alloys Compd. 516, 41 (2012)

    Article  Google Scholar 

  47. B. Sankara Reddy, S. Venkatramana Reddy, N. Koteeswara Reddy, J. Pramoda Kumari, Res. J. Mater. Sci. 1(1), 11 (2013)

    Google Scholar 

  48. P. Banerjee, S. Chakrabarti, S. Maitra, B.K. Dutta, Ultrason. Sonochem. 19, 85 (2012)

    Article  Google Scholar 

  49. M.J. OConnell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J.P. Ma, R.H. Hauge, R.B. Weisman, R.E. Smalley, Science 297, 593 (2002)

    Article  ADS  Google Scholar 

  50. H. Hyung, J.D. Fortner, J.B. Hughes, J.H. Kim, Environ. Sci. Technol. 41, 179 (2007)

    Article  ADS  Google Scholar 

  51. B. Cao, W. Cai, J. Phys. Chem. C 112, 680 (2008)

    Article  Google Scholar 

  52. A.B. Djurisic, Y.H. Leung, Small 2, 944 (2006)

    Article  Google Scholar 

  53. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79, 7983 (1996)

    Article  ADS  Google Scholar 

  54. V.K. Vidhu, D. Philip, Spectrochim. Acta A. 134, 372 (2015)

    Article  ADS  Google Scholar 

  55. B.N. Singh, A.K. Rawat, W. Khan, A.H. Naqvi, B.R. Singh, PLoS One 9, e106937 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The corresponding author is highly grateful to UGC-SPMVV, Sri Padmavati Women’s University, Tirupati, for sanctioning the project under the scheme of innovative proposals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. John Sushma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sushma, N.J., Mahitha, B., Mallikarjuna, K. et al. Bio-inspired ZnO nanoparticles from Ocimum tenuiflorum and their in vitro antioxidant activity. Appl. Phys. A 122, 544 (2016). https://doi.org/10.1007/s00339-016-0069-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0069-9

Keywords

Navigation