Skip to main content
Log in

Study on subsurface-inclined crack propagation during machining of brittle crystal materials

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

There is an immense need to obtain high-quality surface and subsurface on brittle material owing to the advantage of its improved performance. Thus, in this paper, we proposed a mechanical and numerical study of fracture mechanics from the perspective of external loading and indentation geometry in brittle machining. Stress intensity factors are computed to analyze various impacts of external loading and indentation configuration on subsurface crack propagation. Results indicate that the main fracture mode for inclined crack is shear rather than opening and the apex angle of the indentation plays an important role in fracture behavior. As a certain external loading is exerted to the surface of the silicon, a large apex angle of indentation may lead to strong shielding effect on mode II crack propagation. A relationship between critical value of external loading to the crack propagation and the apex angle of the indentation is given in this paper that shows quantitative indication for suppression of crack growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Z.J. Pei, P.M. Ferreira, M. Haselkorn, J. Mater. Process. Technol. 48, 771 (1995)

    Article  Google Scholar 

  2. M. Arif, M. Rahman, W.Y. San, Int. J. Mach. Tool Manuf. 51, 170 (2011)

    Article  Google Scholar 

  3. S. Venkatachalam, X. Li, S.Y. Liang, J. Mater. Process. Technol. 209, 3306 (2009)

    Article  Google Scholar 

  4. W. Hintze, M. Cordes, G. Koerkel, J. Mater. Process. Technol. 216, 199 (2015)

    Article  Google Scholar 

  5. Z. Lv, C. Huang, H. Zhu, J. Wang, Y. Wang, P. Yao, Int. J. Adv. Manuf. Technol. 78, 1361 (2015)

    Article  Google Scholar 

  6. M. Arif, X.Q. Zhang, M. Rahman, S. Kumar, Int. J. Mach. Tool Manuf. 64, 114 (2013)

    Article  Google Scholar 

  7. M. Arif, M. Rahman, W.Y. San, J. Mater. Process. Technol. 212, 1925 (2012)

    Article  Google Scholar 

  8. J.B. Chen, Q.H. Fang, P. Li, Int. J. Mach. Tool Manuf. 91, 12 (2015)

    Article  Google Scholar 

  9. A.G. Evans, Int. J. Fract. 10, 251 (1974)

    Article  Google Scholar 

  10. I.H. Lin, R. Thomson, Acta Metall. 34, 187 (1986)

    Article  Google Scholar 

  11. H.H.M. Cleveringa, E. Van der Giessen, A. Needleman, Mat. Sci. Eng. A Struct. 317, 37 (2001)

    Article  Google Scholar 

  12. O. Aslan, S. Forest, Comp. Mater. Sci. 45, 756 (2009)

    Article  Google Scholar 

  13. F.F. Abraham, H. Gao, Phys. Rev. Lett. 84, 3113 (2000)

    Article  ADS  Google Scholar 

  14. D.J. Andrews, J. Geophys. Res. 81, 5679 (1976)

    Article  ADS  Google Scholar 

  15. M.J. Buehler, H. Gao, Nature 439, 307 (2006)

    Article  ADS  Google Scholar 

  16. M. Comninou, D. Schmueser, J. Dundurs, Int. J. Eng. Sci. 18, 131 (1980)

    Article  MathSciNet  Google Scholar 

  17. M. Comninou, J.R. Barber, J. Dundurs, Int. J. Mech. Sci. 45, 41 (1983)

    Article  Google Scholar 

  18. Y. Cai, X. Zhuang, H. Zhu, Int. J. Comput. Methods 10, 1350028 (2013)

    Article  MathSciNet  Google Scholar 

  19. X. Zhuang, C. Augarde, K. Mathisen, Int. J. Numer. Methods Eng. 92, 969 (2012)

    Article  MathSciNet  Google Scholar 

  20. J. Petucci, C. LeBlond, M. Karimi, Comput. Mater. Sci. 86, 130 (2014)

    Article  Google Scholar 

  21. B.R. Lawn, J. Mater. Sci. 15, 1207 (1980)

    Article  ADS  Google Scholar 

  22. J.R. Rice, R. Thomson, Philos. Mag. 29, 73 (1974)

    Article  ADS  Google Scholar 

  23. T. Inamura, S. Shimada, N. Takezawa, N. Nakahara, CIRP Ann. Manuf. Technol. 46, 31 (1997)

    Article  Google Scholar 

  24. W. Yang, J.C. Tang, Y.S. Ing, C.C. Ma, J. Mech. Phys. Solids 49, 2431 (2001)

    Article  ADS  Google Scholar 

  25. G.E. Beltz, D.M. Lipkin, L.L. Fischer, Phys. Rev. Lett. 82, 4468 (1999)

    Article  ADS  Google Scholar 

  26. L.L. Fischer, G.E. Beltz, J. Mech. Phys. Solids 49, 635 (2001)

    Article  ADS  Google Scholar 

  27. V.S. Deshpande, A. Needleman, E. Van der Giessen, Acta Mater. 50, 831 (2002)

    Article  Google Scholar 

  28. H.H.M. Cleveringa, E. Van der Giessen, A. Needleman, J. Mech. Phys. Solids 48, 1133 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  29. D. Sherman, I. Be’Ery, Phys. Rev. Lett. 93, 265501 (2004)

    Article  ADS  Google Scholar 

  30. D. Sen, C. Thaulow, S.V. Schieffer, A. Cohen, M.J. Buehler, Phys. Rev. Lett. 104, 235502 (2010)

    Article  ADS  Google Scholar 

  31. K. Zhou, A.A. Nazarov, M.S. Wu, Phys. Rev. B 73, 045410 (2006)

    Article  ADS  Google Scholar 

  32. K. Zhou, M.S. Wu, A.A. Nazarov, Acta Mater. 56, 5828 (2008)

    Article  Google Scholar 

  33. K. Zhou, R.B. Wei, Int. J. Mech. Sci. 83, 163 (2014)

    Article  Google Scholar 

  34. Q.H. Fang, Y.W. Liu, C.P. Jiang, Int. J. Solids Struct. 40, 5781 (2003)

    Article  Google Scholar 

  35. Q.H. Fang, Y.W. Liu, C.P. Jiang, B. Li, Eng. Fract. Mech. 73, 1235 (2006)

    Article  Google Scholar 

  36. Q.H. Fang, Y. Liu, Y.W. Liu, B.Y. Huang, Phys. B 404, 3421 (2009)

    Article  ADS  Google Scholar 

  37. A. Broese van Groenou, D.B. Veldkamp, Philips Techn. Rev. 38, 105 (1979)

    Google Scholar 

  38. S.B. Toh, R. McPherson, Fine scale abrasive wear of ceramics by a plastic cutting process[C]//Science of Hard Materials, in Proceedings of 2nd International Conference on Science of Hard Materials held at Rhodes 23–28 September 1984, ed. by E.A. Almond, C.A. Brookes, R. Warren (Bristol, Adam Hilger, 1986), p. 865

  39. M.A. Moore, F.S. King, Wear 60, 123 (1980)

    Article  Google Scholar 

  40. W.S. Blackley, R.O. Scattergood, Precis. Eng. 13, 95 (1991)

    Article  Google Scholar 

  41. T.G. Bifano, T.A. Dow, R.O. Scattergood, J. Manuf. Sci. Eng. Trans. ASME 113, 184 (1991)

    Article  Google Scholar 

  42. J. Yan, M. Yoshino, T. Kuriagawa, T. Shirakashi, K. Syoji, R. Komanduri, Mater. Sci. Eng. A Struct. 297, 230 (2001)

    Article  Google Scholar 

  43. M.B. Cai, X.P. Li, M. Rahman, Int. J. Mach. Tool. Manuf. 47, 75 (2007)

    Article  Google Scholar 

  44. S. Arefin, X.P. Li, M. Rahman, K. Liu, Int. J. Adv. Manuf. Technol. 31, 655 (2007)

    Article  Google Scholar 

  45. J. Patten, W. Gao, K. Yasuto, J. Manuf. Sci. Eng. Trans. ASME 127, 522 (2005)

    Article  Google Scholar 

  46. F.Z. Fang, G.X. Zhang, Int. J. Adv. Manuf. Technol. 22, 703 (2003)

    Article  Google Scholar 

  47. J.C. Morris, D.L. Callahan, J. Mater. Res. 9, 2907 (1994)

    Article  ADS  Google Scholar 

  48. M. Kachanov, E. Karpetian, Int. J. Solids Struct. 34, 4101 (1997)

    Article  Google Scholar 

  49. A. Kiris, M. Kachanov, Int. J. Eng. Sci. 50, 233 (2012)

    Article  MathSciNet  Google Scholar 

  50. Y.X. Zhao, Q.H. Fang, Y.W. Liu, C.Z. Jiang, Int. J. Eng. Sci. 70, 91 (2013)

    Article  MathSciNet  Google Scholar 

  51. Q.H. Fang, L.C. Zhang, Acta Mater. 61, 5469 (2013)

    Article  MathSciNet  Google Scholar 

  52. Q.H. Fang, L.C. Zhang, J. Mater. Res. 28, 1995 (2013)

    Article  ADS  Google Scholar 

  53. T. Sumomogi, M. Nakamura, T. Endo, T. Goto, S. Kaji, Mater. Charact. 48, 141 (2002)

    Article  Google Scholar 

  54. H.Y. Tam, H.B. Cheng, Y.W. Wang, J. Mater. Process. Technol. 192, 276 (2007)

    Article  Google Scholar 

  55. F.Z. Fang, H. Wu, Y.C. Liu, Int. J. Mach. Tool. Manuf. 45, 1681 (2005)

    Article  Google Scholar 

  56. Z.J. Pei, S.R. Billingsley, S. Miura, Int. J. Mach. Tool Manuf. 39, 1103 (1999)

    Article  Google Scholar 

  57. N. Bernstein, D.W. Hess, Phys. Rev. Lett. 91, 025501 (2003)

    Article  ADS  Google Scholar 

  58. R.D. Deegan, S. Chheda, L. Patel, M. Marder, H.L. Swinney, J. Kim et al., Phys. Rev. E 67, 066209 (2003)

    Article  ADS  Google Scholar 

  59. S. Malkin, T.W. Hwang, Ann. CIRP 45, 569 (1996)

    Article  Google Scholar 

  60. B.R. Lawn, A.G. Evans, J. Mater. Sci. 12, 2195 (1977)

    Article  ADS  Google Scholar 

  61. J.C. Lambropoulos, S.D. Jacobs, J. Ruckman, Ceram. Trans. 102, 113 (1999)

    Google Scholar 

  62. X.N. Jing, S. Maiti, G. Subhash, J. Am. Ceram. Soc. 90, 885 (2007)

    Article  Google Scholar 

  63. B.R. Lawn, A.G. Evans, D.B. MarshallA, J. Am. Ceram. Soc. 63, 574 (1980)

    Article  Google Scholar 

  64. D.A. Hills, P.A. Kelly, Solution of Crack Problems: The Distributed Dislocation Technique (Kluwer Academic, Dordecht, 1996)

    Book  MATH  Google Scholar 

  65. K.L. Johnson, Contact Mechanics (Cambridge University Press, London, 1985)

    Book  MATH  Google Scholar 

  66. Y. Ahn, T.N. Farris, S. Chandrasekar, Mech. Mater. 29, 143 (1998)

    Article  Google Scholar 

  67. F. Erdogan, G.D. Gupta, Q. Appl. Math. 29, 525 (1972)

    MathSciNet  Google Scholar 

  68. J. Dundurs, M. Comninou, J. Elast. 9, 71 (1979)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of the NNSFC (Grant Nos. 11572118 and 51175164), the Hunan Provincial Science Fund for Distinguished Young Scholars (Grant No. 2015JJ1006), the Fok Ying-Tong Education Foundation, China (Grant No. 141005), and the Interdisciplinary Research Project of Hunan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qihong Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Chen, J., Li, J. et al. Study on subsurface-inclined crack propagation during machining of brittle crystal materials. Appl. Phys. A 122, 493 (2016). https://doi.org/10.1007/s00339-016-0019-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0019-6

Keywords

Navigation