Skip to main content
Log in

Modifications in optical and electrical properties of selenium nanowire arrays using ion beam irradiation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present paper, 80 MeV Si7+ ion beam-induced changes in selenium nanowire arrays, fabricated on copper substrates, have been examined. The nanowire arrays were electrodeposited into polymer membranes using template method. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV–visible spectroscopy have been used to study the ion-induced effects in fabricated nanowire arrays. The XRD and FESEM results confirmed the formation of selenium nanowire arrays with trigonal structures. An intensity variation in the XRD peaks is observed for irradiated nanowires at different ion fluences. The band gap energy of the irradiated nanowire arrays was found to reduce compared with the pristine case. The irradiation of semiconducting selenium nanowires enhances the electrical conductivity. The current–voltage characterizations also confirm an enhancement in electrical conductivity of selenium nanowire arrays with an increase in ion fluence. This study is anticipated to greatly facilitate the design and development of nanodevices-based semiconductor nanowires which can be utilized even in the harsh environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.E. Toimil-Molares, Beilstein J. Nanotechnol. 3, 860 (2012)

    Article  Google Scholar 

  2. S. Iijima, Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  3. N. Kumar, R. Kumar, S. Kumar, S.K. Chakarvarti, Curr. Appl. Phys. 14, 1547 (2014)

    Article  ADS  Google Scholar 

  4. K. Maaz, S. Karim, M. Usman, A. Mumtaz, J. Liu, J.L. Duan, M. Maqbool, Nanoscale Res. Lett. 5, 1111 (2010)

    Article  ADS  Google Scholar 

  5. T. Zhai, X. Fang, L. Li, Y. Bando, D. Golberg, Nanoscale 2, 168 (2010)

    Article  ADS  Google Scholar 

  6. A.I. Hochbaum, P. Yang, Chem. Rev. 110, 527 (2010)

    Article  Google Scholar 

  7. Z.L. Wang, J. Song, Science 312, 242 (2006)

    Article  ADS  Google Scholar 

  8. B.Z. Tian, X.L. Zheng, T.J. Kempa, Y. Fang, N.F. Yu, G.H. Yu, J.L. Huang, C.M. Lieber, Nature 449, 885 (2007)

    Article  ADS  Google Scholar 

  9. Y. Cui, C.M. Lieber, Science 291, 851 (2001)

    Article  ADS  Google Scholar 

  10. C.X. Zhao, Y.F. Li, J. Zhou, L.Y. Li, S.Z. Deng, N.S. Xu, J. Chen, Cryst. Growth Des. 13, 2897 (2013)

    Article  Google Scholar 

  11. M. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292, 1897 (2001)

    Article  ADS  Google Scholar 

  12. X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber, Nature 409, 66 (2001)

    Article  ADS  Google Scholar 

  13. Y. Cui, Z. Zhong, D. Wang, W.U. Wang, C.M. Lieber, Nano Lett. 3, 149 (2003)

    Article  ADS  Google Scholar 

  14. L.L. Wang, S.D. Gong, L.H. Wu, X.J. Li, Appl. Surf. Sci. 270, 124 (2013)

    Article  ADS  Google Scholar 

  15. J. Qian, K.J. Jiang, J.H. Huang, Q.S. Liu, L.M. Yang, Y. Song, Angew. Chem. Int. Ed. 51, 1 (2012)

    Article  Google Scholar 

  16. D. Qin, H. Tao, Y. Zhao, L. Lan, K. Chan, Y. Cao, Nanotechnology 19, 355201 (2008)

    Article  Google Scholar 

  17. Z. Wang, S. Zhu, Front. Optoelectron. 4, 188 (2011)

    Article  Google Scholar 

  18. Z.M. Liao, C. Hao, L.P. Liu, D.P. Yu, Nanoscale Res. Lett. 5, 926 (2010)

    Article  ADS  Google Scholar 

  19. K. Tripathi, A.A. Bahishti, M.A. Majeed Khan, M. Husain, M. Zulfequar, Phys. B 404, 2134 (2009)

    Article  ADS  Google Scholar 

  20. L. Cheng, M. Shao, D. Chen, X. Wei, F. Wang, J.J. Hua, J. Mater. Sci.: Mater. Electron. 19, 1209 (2008)

    Google Scholar 

  21. K. Mondal, S.K. Srivastava, Mater. Chem. Phys. 124, 535 (2010)

    Article  Google Scholar 

  22. H. Chen, D.W. Shin, J.G. Nam, K.W. Kwon, J.B. Yoo, Mater. Res. Bull. 45, 699 (2010)

    Article  Google Scholar 

  23. B. Zhang, X. Ye, W. Dai, W. Hou, F. Zuo, Y. Xie, Nanotechnology 17, 385 (2006)

    Article  ADS  Google Scholar 

  24. L. Ren, H. Zhang, P. Tan, Y. Chen, Z. Zhang, Y. Chang, J. Xu, F. Yang, D. Yu, J. Phys. Chem. B 108, 4627 (2004)

    Article  Google Scholar 

  25. Y. Ma, L. Qi, W. Shen, J. Ma, Langmuir 21, 6161 (2005)

    Article  Google Scholar 

  26. W. Zhu, H. Xu, W. Wang, J. Shi, Appl. Phys. A 83, 281 (2006)

    Article  ADS  Google Scholar 

  27. C.T. Ho, J.W. Kim, W.B. Kim, K. Song, R.A. Kanaly, M.J. Sadowsky, H.G. Hur, J. Mater. Chem. 20, 5899 (2010)

    Article  Google Scholar 

  28. B.T. Mayers, K. Liu, D. Sunderland, Y. Xia, Chem. Mater. 15, 3852 (2003)

    Article  Google Scholar 

  29. X. Li, Y. Li, S. Li, W. Zhou, H. Chu, W. Chen, I.L. Li, Z. Tang, Cryst. Growth Des. 5, 911 (2005)

    Article  Google Scholar 

  30. S. Kumar, J. Exp. Nanosci. 4, 341 (2009)

    Article  Google Scholar 

  31. X.Y. Zhang, Y. Cai, J.Y. Miao, K.Y. Ng, Y.F. Chan, X.X. Zhang, N. Wang, J. Cryst. Growth 276, 674 (2005)

    Article  ADS  Google Scholar 

  32. V.R.V. Pillai, S.K. Khamari, V.K. Dixit, T. Ganguli, S. Kher, S.M. Oak, Nucl. Instrum. Methods Phys. Res. A 685, 41 (2012)

    Article  ADS  Google Scholar 

  33. C. Borschel, S. Spindler, D. Lerose, A. Bochmann, S.H. Christiansen, S. Nietzsche, M. Oertel, C. Ronning, Nanotechnology 22, 185307 (2011)

    Article  ADS  Google Scholar 

  34. C.F. Dee, I. Ahmad, L. Yan, X.T. Zhou, B.Y. Majlis, NANO 6, 259 (2011)

    Article  Google Scholar 

  35. M. Ahmad, C. Pan, J. Zhao, J. Iqbal, J. Zhu, Mater. Chem. Phys. 120, 319 (2010)

    Article  Google Scholar 

  36. S.K. Khamari, V.K. Dixit, T. Ganguli, S. Porwal, S.D. Singh, S. Kher, R.K. Sharma, S.M. Oak, Nucl. Instrum. Methods Phys. Res. B 269, 272 (2011)

    Article  ADS  Google Scholar 

  37. R.D. Schrimpf, D.M. Fleetwood, M.L. Alles, R.A. Reed, G. Lucovsky, S.T. Pantelides, Microelectron. Eng. 88, 1259 (2011)

    Article  Google Scholar 

  38. K.M. Abhirami, R. Sathyamoorthy, K. Asokan, Radiat. Phys. Chem. 91, 35 (2013)

    Article  ADS  Google Scholar 

  39. S. Honda, R. Tamura, Y. Nosho, A. Tsukagoshi, M. Niibe, M. Terasawa, R. Hirase, H. Izumi, H. Yoshioka, K. Niwase, E. Taguchi, K. Lee, M. Oura, Jpn. J. Appl. Phys. 53, 02BD06 (2014)

    Article  Google Scholar 

  40. S.K. Gautam, F. Singh, I. Sulania, R.G. Singh, P.K. Kulriya, E. Pippel, J. Appl. Phys. 115, 143504 (2014)

    Article  ADS  Google Scholar 

  41. S.K. Park, Y.K. Hong, Y.B. Lee, S.W. Bae, J. Joo, Curr. Appl. Phys. 9, 847 (2009)

    Article  ADS  Google Scholar 

  42. P. Rana, R.P. Chauhan, Phys. B 451, 26 (2014)

    Article  ADS  Google Scholar 

  43. C.X. Zhao, Y.F. Li, Y.C. Chen, J.Q. Wu, B. Wang, F.T. Yi, S.Z. Deng, N.S. Xu, J. Chen, Nanotechnology 24, 275703 (2013)

    Article  ADS  Google Scholar 

  44. M. Kumari, P. Rana, R.P. Chauhan, Nucl. Instrum. Methods Phys. Res. A 753, 116 (2014)

    Article  ADS  Google Scholar 

  45. N. Kumar, R. Kumar, S. Kumar, S.K. Chakarvarti, J. Mater. Sci.: Mater. Electron. 25, 3537 (2014)

    Google Scholar 

  46. S.K. Chakarvarti, Radiat. Meas. 44, 1085 (2009)

    Article  Google Scholar 

  47. S.K. Chakarvarti, J. Vetter, Nucl. Instrum. Methods Phys. Res. B 62, 109 (1991)

    Article  ADS  Google Scholar 

  48. R. Monika, R.P. Kumar, R. Chauhan, S.K.Chakarvarti Kumar, J. Exp. Nanosci. 10, 126 (2013)

    Google Scholar 

  49. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010)

    Article  ADS  Google Scholar 

  50. G.B. Harris, Philos. Mag. 43, 113 (1952)

    Article  Google Scholar 

  51. B.D. Cullity, S.R. Stock, Elements of X-ray diffraction, 3rd edn. (Prentice-Hall, New Jersey, 2001), pp. 167–171

    Google Scholar 

  52. G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953)

    Article  Google Scholar 

  53. B. Gates, B. Mayers, B. Cattle, Y. Xia, Adv. Funct. Mater. 12, 219 (2002)

    Article  Google Scholar 

  54. J. Tauc, in Amorphous and liquid semiconductors, ed. by J. Tauc (Plenum Press, New York, 1974), p. 159

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the Director, Inter University Accelerator Centre, New Delhi, India, for providing ion beam facility. The assistance provided from Pelletron group during irradiation experiment is also thankfully acknowledged. Authors also acknowledge National Institute of Technology, Kurukshetra, for the XRD facility and Indian Institute of Technology, Mumbai, for providing FESEM facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushil Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Kumar, R., Kumar, S. et al. Modifications in optical and electrical properties of selenium nanowire arrays using ion beam irradiation. Appl. Phys. A 121, 571–579 (2015). https://doi.org/10.1007/s00339-015-9418-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9418-3

Keywords

Navigation