Skip to main content

Advertisement

Log in

Dense Mg x Ni1−x O nanocubes with special grain boundaries and paracrystalline distribution of defect clusters by pulsed laser ablation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Pulsed laser ablation of reactively sintered MgO–NiO (9:1, 1:1, 1:9 molar ratio) disks was used to fabricate dense rocksalt-type Mg x Ni1−x O in the form of submicron-sized spherical particulate and nanocubes for X-ray diffraction and transmission electron microscopic characterizations. The rapidly solidified particulates and the condensed nanocubes have internal compressive stress increasing up to ca. 1 GPa with the increases in Ni content. The nanocubes were coalesced over well-developed polar surfaces, i.e., {100}, minor {110} and their vicinal surfaces with growth ledges, to form special grain boundaries, i.e., (100) 15° and 45° twist boundaries and [100] {001}/{011} asymmetric tilt boundaries. The Mg x Ni1−x O nanocubes also showed 3-D paracrystalline distribution of defect clusters with 2 nm and 1.5–2 nm interspacing for M1N9 and M1N1 compositions, respectively, but G.P. zone-like features for M9N1 composition. The Mg x Ni1−x O particulates and nanocondensates have UV–visible absorption edge in the range 4.0–3.3 eV, decreasing with increasing Ni content for potential engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H.G. Sockel, H. Schmalzries, Ber. Bunsenges. Phys. Chem. 72, 745 (1968)

    Google Scholar 

  2. S.M. Tomlinson, C.R.A. Catlow, J.H. Harding, J. Phys. Chem. Solids 51, 477 (1990)

    Article  ADS  Google Scholar 

  3. B.E.F. Fender, F.D. Riley, in The Chemistry of Extended Defects in Non-metallic Solids, eds. by L. Eyring, M. O’Keefe (North-Holland, Amsterdam, 1970)

  4. J. Chen, P. Shen, J. Solid State Chem. 140, 361 (1998)

    Article  ADS  Google Scholar 

  5. S.R. Wang, P. Shen, J. Solid State Chem. 140, 38 (1998)

    Article  ADS  Google Scholar 

  6. M.L. Jeng, P. Shen, J. Solid State Chem. 152, 421 (2000)

    Article  ADS  Google Scholar 

  7. T.R. Welberry, A.G. Christy, J. Solid State Chem. 117, 398 (1995)

    Article  ADS  Google Scholar 

  8. H.V. Wartenberg, E. Prophet, Z. Anorg. Chem. 208, 369 (1932)

    Article  Google Scholar 

  9. E.M. Levin, C.R. Robbins, H.F. McMurdie, Phase Diagram for Ceramists, compiled at the Nation Bureau of Standard (edited and published by the American Ceramic Society Inc., 1964)

  10. G. Pacchioni, C. Di Valentin, D. Dominguez-Ariza, F. Illas, T. Bredow, T. Klüner, V. Staemmler, J. Phys.: Condens. Matter 16, S2497 (2004)

    ADS  Google Scholar 

  11. R. Valero, J.R.B. Gomes, D.G. Truhlar, F. Illas, J. Chem. Phys. 132, 104701 (2010)

    Article  ADS  Google Scholar 

  12. S. Yagi, Y. Ichikawa, I. Yamada, T. Doi, T. Ichitsubo, E. Matsubara, Jpn. J. Appl. Phys. 52, 025501 (2013)

    Article  ADS  Google Scholar 

  13. J. Srinakruang, K. Sato, T. Vitidsant, K. Fujimoto, Catal. Commun. 6, 437 (2005)

    Article  Google Scholar 

  14. J. Srinakruang, K. Sato, T. Vitidsant, K. Fujimoto, Fuel 85, 2419 (2006)

    Article  Google Scholar 

  15. C.M. Tsai, MS Thesis, National Sun Yat-sen University, Taiwan (2003)

  16. D.A. Porter, K.E. Easterling, M.Y. Sherif, Phase Transformations in Metals and Alloys, 3rd edn. (CRC Press, Boca Raton, 2009)

    Google Scholar 

  17. S.Y. Chen, P. Shen, Phys. Rev. Lett. 89, 096106 (2002)

    Article  ADS  Google Scholar 

  18. S.Y. Chen, P. Shen, Jpn. J. Appl. Phys. 43, 1519 (2004)

    Article  ADS  Google Scholar 

  19. M.H. Tsai, S.Y. Chen, P. Shen, J. Chem. Phys. 122, 204708 (2005)

    Article  ADS  Google Scholar 

  20. M.H. Tsai, S.Y. Chen, R.P. Shen, P. Shen, J. Appl. Phys. 99, 054302 (2006)

    Article  ADS  Google Scholar 

  21. W.J. Tseng, P. Shen, S.Y. Chen, J. Solid State Chem. 179, 1237 (2006)

    Article  ADS  Google Scholar 

  22. C. Pan, S.Y. Chen, P. Shen, J. Phys. Chem. B 110, 24340 (2006)

    Article  Google Scholar 

  23. C. Pan, S.Y. Chen, P. Shen, J. Cryst. Growth 310, 699 (2008)

    Article  ADS  Google Scholar 

  24. C.H. Lin, S.Y. Chen, N.J. Ho, D. Gan, P. Shen, J. Phys. Chem. Solid 70, 1505 (2009)

    Article  ADS  Google Scholar 

  25. G. Chryssolouris, Laser Machining-Theory and Practice (Springer, New York, 1991), p. 274

    Book  Google Scholar 

  26. W.S. Lee, P. Shen, J. Cryst. Growth 205, 169 (1999)

    Article  ADS  Google Scholar 

  27. M.H. Tsai, S.Y. Chen, P. Shen, Nano Lett. 4, 1179 (2004)

    ADS  Google Scholar 

  28. M.H. Tsai, P. Shen, S.Y. Chen, J. Appl. Phys. 100, 114313 (2006)

    Article  ADS  Google Scholar 

  29. C.N. Huang, S.Y. Chen, M.H. Tsai, P. Shen, J. Cryst. Growth 305, 285 (2007)

    Article  ADS  Google Scholar 

  30. P.J. Chen, C.H. Wu, P. Shen, S.Y. Chen, Appl. Phys. A 116, 823 (2014)

    Article  ADS  Google Scholar 

  31. Y.T. Chan, C.H. Wu, P. Shen, S.Y. Chen, Appl. Phys. A 116, 1065 (2014)

    Article  ADS  Google Scholar 

  32. S.W. Yeh, Y.J. Ji, H.L. Huang, D. Gan, P. Shen, J. Phys. Chem. C 114, 18886 (2010)

    Article  Google Scholar 

  33. P. Kofstad, Nonstoichiometry, Difusion and Electrical Conductivity in Binary Metal Oxides (Wiley Interscience, New York, 1972)

    Google Scholar 

  34. A. Atkinson, A.E. Hughes, A. Hammou, Phil. Mag. A 43, 1071 (1981)

    Article  ADS  Google Scholar 

  35. F.A. Kröger, H.J. Vink, Solid State Phys. 3, 307 (1956)

    Google Scholar 

  36. R.D. Shannon, Acta Cryst. A 32, 751 (1976)

    Article  Google Scholar 

  37. T.R. Welberry, A.G. Christy, Phys. Chem. Miner. 24, 24 (1997)

    Article  ADS  Google Scholar 

  38. N.N. Greenwood, A. Earnshaw, Chemistry of the Elements (Pergamon Press, Oxford, 1984), pp. 1336–1337

    Google Scholar 

  39. P. Vallet, P. Raccah, Mem. Sci. Rev. Metall. 62, 1 (1965)

    Google Scholar 

  40. B. Anderson, J.O. Sletnes, Acta Cryst. A 33, 268 (1977)

    Article  Google Scholar 

  41. W.S. Lee, P. Shen, J. Solid State Chem. 177, 101 (2004)

    Article  ADS  Google Scholar 

  42. E. Huang, High Pressure Res. 13, 307 (1995)

    Article  ADS  Google Scholar 

  43. Y.W. Fei, Am. Mineral. 84, 272 (1999)

    Google Scholar 

  44. S. Rekhi, S.K. Saxena, Z.D. Atlasa, J. Hub, Solid State Comm. 117, 33 (2001)

    Article  ADS  Google Scholar 

  45. P. Shen, W.A. Bassett, L. Liu, Geochim. Cosmochim. Acta 47, 773 (1983)

    Article  ADS  Google Scholar 

  46. S.C. Parker, E.T. Kelsey, P.M. Oliver, J.O. Titiloye, Faraday Discuss. 95, 75 (1993)

    Article  ADS  Google Scholar 

  47. P.M. Oliver, S.C. Parker, W.C. Mackrodt, Model. Simul. Mat. Sci. Eng. 1, 755 (1993)

    Article  ADS  Google Scholar 

  48. D. Cappus, M. Habel, E. Neuhaus, M. Heber, F. Rohr, H.J. Freund, Surf. Sci. 337, 268 (1995)

    Article  ADS  Google Scholar 

  49. A. Wander, I.J. Bush, N.M. Harrison, Phys. Rev. B 68, 233405 (2003)

    Article  ADS  Google Scholar 

  50. R.H. Wu, MS thesis, National Sun Yat-sen University, Taiwan (2014)

  51. G. Hermann, H. Gleiter, G. Baro, Acta Metall. 24, 353 (1976)

    Article  Google Scholar 

  52. S.W. Chan, R.W. Balluffi, Acta Metall. 33, 1113 (1985)

    Article  Google Scholar 

  53. S.W. Chan, R.W. Balluffi, Acta Metall. 34, 2191 (1986)

    Article  Google Scholar 

  54. R. Maurer, Acta Metall. 35, 2557 (1987)

    Article  Google Scholar 

  55. Y. Gao, S.A. Dregia, P.G. Shewmon, Acta Mater. 37, 1627 (1989)

    Article  Google Scholar 

  56. J.T.M. De Hosson, V. Vitec, Phil. Mag. 61, 305 (1990)

    Article  Google Scholar 

  57. S.M. Allameh, S.A. Dregia, P.G. Shewmon, Acta Mater. 42, 3569 (1994)

    Article  Google Scholar 

  58. M. Kohyama, R. Yamamoto, Phys. Rev. B 49, 17102 (1994)

    Article  ADS  Google Scholar 

  59. K.L. Merkle, L.J. Thompson, Phys. Rev. Lett. 83, 556 (1999)

    Article  ADS  Google Scholar 

  60. J.M. Zhang, H. Xin, X.M. Wei, Appl. Surf. Sci. 246, 14 (2005)

    Article  ADS  Google Scholar 

  61. J.M. Zhang, X.M. Wei, H. Xin, Appl. Surf. Sci. 243, 1 (2005)

    Article  ADS  Google Scholar 

  62. H. Xin, J.M. Zhang, X.M. Wei, K.W. Xu, Surf. Interface Anal. 37, 608 (2005)

    Article  Google Scholar 

  63. X.M. Wei, J.M. Zhang, K.W. Xu, Appl. Surf. Sci. 253, 854 (2006)

    Article  ADS  Google Scholar 

  64. M.L. Jeng, P. Shen, Mater. Sci. Eng., A 287, 1 (2000)

    Article  Google Scholar 

  65. M.Y. Li, P. Shen, S.L. Hwang, Mater. Sci. Eng., A 343, 227 (2003)

    Article  Google Scholar 

  66. J.Y. Wang, P. Shen, Mater. Sci. Eng., A 359, 192 (2003)

    Article  Google Scholar 

  67. C.N. Huang, P. Shen, K.Y. Hsieh, J. Eur. Ceram. Soc. 27, 4685 (2007)

    Article  Google Scholar 

  68. C. Dobe, E. González, P.L.W. Tregenna-Piggott, C. Reber, Dalton Trans. 43, 17864 (2014)

    Article  Google Scholar 

  69. A. Singh, S.L.Y. Chang, R.K. Hocking, U. Bach, L. Spiccia, Energy Environ. Sci. 6, 579 (2013)

    Article  Google Scholar 

  70. L.G. Ferguson, F. Dogan, J. Mater. Sci. 37, 1301 (2002)

    Article  ADS  Google Scholar 

  71. M. Huang, F. Li, J.Y. Ji, Y. Zhang, X.L. Zhao, X. Gao, CrystEngComm (2014). doi:10.1039/C3CE42335B

    Google Scholar 

  72. J.J. Papike, Planetary materials, in Reviews in Mineralogy vol. 36, series Editor: Ribbe P.H. (Mineral. Soc. Am. 1998)

Download references

Acknowledgments

This research was supported by Center for Nanoscience and Nanotechnology at NSYSU and partly by the Ministry of Science and Technology, ROC. We thank anonymous referees and editor for constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuei-Yuan Chen.

Appendix

Appendix

See Fig. 13.

Fig. 13
figure 13

SEM a SEI of the greenish M1N1 disk target subjected to PLA under free run mode in air for 10 min to form a ablated trough with dark color under naked eye (inset), b, c enlarged from intact and ablated area, respectively, showing that the former has the solid-state sintered grains ca. 10–20 μm in size with inter- and intragranular pores, whereas the latter has finer recrystallized grains and solidified molten flow

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, RH., Lin, SS., Shen, P. et al. Dense Mg x Ni1−x O nanocubes with special grain boundaries and paracrystalline distribution of defect clusters by pulsed laser ablation. Appl. Phys. A 120, 1121–1132 (2015). https://doi.org/10.1007/s00339-015-9287-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9287-9

Keywords

Navigation