Skip to main content
Log in

High aspect ratio, high-quality microholes in PMMA: a comparison between femtosecond laser drilling in air and in vacuum

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Microholes, especially high aspect ratio, high-quality microholes with small diameters (<100 μm), have broad applications. However, it is very difficult for traditional drilling methods to obtain deep microholes, especially with aspect ratios of over 50:1. Femtosecond lasers provide a promising solution for efficient drilling of deep microholes with high-precision material removal, reduced recast/microcracks, minimized heat-affected zones, and the absence of plasma-shielding effects. In this work, a comparison study of high aspect ratio, high-quality microholes fabricated in a poly(methyl methacrylate) (PMMA) bulk substrate with the ambient pressure adjusted from 105 Pa (air) down to 1 Pa (vacuum) is presented. High aspect ratio (over 100:1) microholes were obtained in a vacuum environment. The contrast between microhole evolution in air and in vacuum was investigated. The results indicate that efficient energy propagation and easy ejection of ablated material/plasma are probably the most important benefits of drilling microholes in vacuum. The dependence of microhole shapes on different fabrication parameters, including pulse energy and ambient pressure, was investigated to quantitatively reveal the underlying mechanisms. The enhanced drilling effect in vacuum was only found in a high pulse energy region (E p > 20 μJ), and it becomes saturated when the ambient pressure was reduced to ~102 Pa at a pulse energy of 50 μJ. Drilling microholes in a vacuum provides a simple and effective way of rapidly fabricating high aspect ratio, high-quality microholes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Baheri, S.P.A. Tabrizi, B.A. Jubran, Heat Mass Transfer 44, 989 (2008)

    Article  ADS  Google Scholar 

  2. L. Jiang, L.J. Zhao, S.M. Wang, J.P. Yang, Opt. Express 19, 17591 (2011)

    Article  ADS  Google Scholar 

  3. Y. Liao, J.X. Song, E. Li, Y. Luo, Y.L. Shen, D.P. Chen, Y. Cheng, Z.Z. Xu, K. Sugioka, K. Midorikawa, Lab Chip 12, 746 (2012)

    Article  Google Scholar 

  4. Z.Z. Fei, X. Hu, H. Choi, S.N. Wang, D. Farson, L.J. Lee, Anal. Chem. 82, 353 (2010)

    Article  Google Scholar 

  5. E.H. Lundgren, A.C. Forsman, M.L. Hoppe, K.A. Moreno, A. Nikroo, Fusion Sci. Technol. 51, 576 (2007)

    Google Scholar 

  6. H. Varel, D. Ashkenasi, A. Rosenfeld, M. Wähmer, E.E.B. Campbell, Appl. Phys. A 65, 367 (1997)

    Article  ADS  Google Scholar 

  7. H.K. Tönshoff, C. Momma, A. Ostendorf, S. Nolte, G. Kamlage, J. Laser Appl. 12, 23 (2000)

    Article  Google Scholar 

  8. F. Dausinger, Riken Rev. 50, 77 (2003)

    Google Scholar 

  9. S. Baudach, J. Bonse, J. Krüger, W. Kautek, Appl. Surf. Sci. 154, 555 (2000)

    Article  ADS  Google Scholar 

  10. Y. Zhang, R.M. Lowe, E. Harvey, P. Hannadord, A. Endo, Appl. Surf. Sci. 186, 345 (2002)

    Article  ADS  Google Scholar 

  11. D. Esser, S. Rezaei, J.Z. Li, P.R. Herman, J. Gottmann, Opt. Express 19, 25632 (2011)

    Article  ADS  Google Scholar 

  12. J.R. Vázquez de Aldana, C. Méndez, L. Roso, P. Moreno, J. Phys. D Appl. Phys. 38, 2764 (2005)

    Article  ADS  Google Scholar 

  13. Y. Li, K. Itoh, W. Watanabe, K. Yamada, D. Kuroda, J. Nishii, Y.Y. Jiang, Opt. Lett. 26, 1912 (2001)

    Article  ADS  Google Scholar 

  14. D.J. Hwang, T.Y. Choi, C.P. Grigoropoulos, Appl. Phys. A 79, 605 (2004)

    Article  ADS  Google Scholar 

  15. L. Jiang, P.J. Liu, X.L. Yan, N. Leng, C.C. Xu, H. Xiao, Y.F. Lu, Opt. Lett. 37, 2781 (2012)

    Article  ADS  Google Scholar 

  16. L. Shah, O.G. Kosareva, A.A. Koltun, IEEE J. Quantum Elect. 40, 57 (2004)

    Article  ADS  Google Scholar 

  17. S. Döring, S. Richter, S. Nolte, A. Tünnermann, Opt. Express 18, 20395 (2010)

    Article  Google Scholar 

  18. S. Döring, S. Richter, F. Heisler, T. Ullsperger, A. Tünnermann, S. Nolte, Appl. Phys. A 112, 623 (2013)

    Article  ADS  Google Scholar 

  19. J.R. Vázquez de Aldana, C. Méndez, L. Roso, Opt. Express 14, 1329 (2006)

    Article  ADS  Google Scholar 

  20. S. Tao, B.X. Wu, S.T. Lei, J. Appl. Phys. 109, 123506 (2011)

    Article  ADS  Google Scholar 

  21. S. Döring, S. Richter, A. Tünnermann, S. Nolte, Proc. SPIE 8247, 824717 (2013)

    Article  Google Scholar 

  22. L. Shah, J. Tawney, M. Richardson, K. Richardson, Appl. Surf. Sci. 183, 151 (2001)

    Article  ADS  Google Scholar 

  23. S. Klimentov, P. Pivovarov, N. Fedorov, S. Guizard, F. Dausinger, V. Konov, Appl. Phys. B 105, 495 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research is supported by the National Basic Research Program of China (973 Program) (Grant 2011CB013000) and National Natural Science Foundation of China (NSFC) (Grants 91323301 and 51305030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, B., Jiang, L., Li, X. et al. High aspect ratio, high-quality microholes in PMMA: a comparison between femtosecond laser drilling in air and in vacuum. Appl. Phys. A 119, 61–68 (2015). https://doi.org/10.1007/s00339-014-8955-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8955-5

Keywords

Navigation