Skip to main content
Log in

Novel semiconducting boron carbide/pyridine polymers for neutron detection at zero bias

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Thin films containing aromatic pyridine moieties bonded to boron, in the partially dehydrogenated boron-rich icosahedra (B10C2HX), prove to be an effective material for neutron detection applications when deposited on n-doped (100) silicon substrates. The characteristic I–V curves for the heterojunction diodes exhibit strong rectification and largely unperturbed normalized reverse bias leakage currents with increasing pyridine content. The neutron capture generated pulses from these heterojunction diodes were obtained at zero bias voltage although without the signatures of complete electron-hole collection. These results suggest that modifications to boron carbide may result in better neutron voltaic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.N. Caruso, J. Phys.: Condens. Matter 22, 1–32 (2010). doi:10.1088/0953-8984/22/44/443201

    MathSciNet  Google Scholar 

  2. A.N. Caruso, R.B. Billa, S. Balaz, J.I. Brand, P.A. Dowben, J. Phys.: Condens. Matter 16, L139–L146 (2004). doi:10.1088/0953-8984/16/10/L04

    ADS  Google Scholar 

  3. B.W. Robertson, S. Adenwalla, A. Harken, P. Welsch, J.I. Brand, P.A. Dowben, J.P. Claassen, Appl. Phys. Lett. 80, 3644–3646 (2002). doi:10.1063/1.1477942

    Article  ADS  Google Scholar 

  4. B.W. Robertson, S. Adenwalla, A. Harken, P. Welsch, J.I. Brand, J.P. Claassen, N.M. Boag, P.A. Dowben, Proc. SPIE 4785, 226–233 (2002). doi:10.1117/12.453923

    Article  ADS  Google Scholar 

  5. S. Adenwalla, R. Billa, J.I. Brand, E. Day, M.J. Diaz, A. Harken, A. McMullen-Gunn, R. Padmanabhan, B.W. Robertson, Proc. SPIE 5199, 70–74 (2004). doi:10.1117/12.506646

    Article  ADS  Google Scholar 

  6. K. Osberg, N. Schemm, S. Balkir, J.I. Brand, M.S. Hallbeck, P.A. Dowben, M.W. Hoffman, IEEE Sens. J. 6, 1531–1538 (2006). doi:10.1109/JSEN.2006.883905

    Article  Google Scholar 

  7. K. Osberg, N. Schemm, S. Balkir, J.I Brand, M.S. Hallbeck, P.A. Dowben, IEEE Int. Symp. Circ. (2006) 1179–1182. doi:10.1109/ISCAS.2006.1692801

  8. A.N. Caruso, P.A. Dowben, S. Balkir, N. Schemm, K. Osberg, R.W. Fairchild, O.B. Flores, S. Balaz, A.D. Harken, B.W. Robertson, J.I. Brand, Mater. Sci. Eng. 135, 129–133 (2006). doi:10.1016/j.mseb.2006.08.049

    Article  Google Scholar 

  9. E. Day, M.J. Diaz, S. Adenwalla, J. Phys. D Appl. Phys. 39, 2920–2924 (2006). doi:10.1088/0022-3727/39/14/007

    Article  ADS  Google Scholar 

  10. N. Hong, J. Mullins, K. Foreman, S. Adenwalla, J. Phys. D Appl. Phys. 43, 275101 (2010). doi:10.1088/0022-3727/43/27/275101

    Article  ADS  Google Scholar 

  11. N. Hong, L. Crow, S. Adenwalla, Nucl. Intrumen. Methods Phys. Res. A 708, 19–23 (2013). doi:10.1016/j.nima.2013.12.105

    Article  ADS  Google Scholar 

  12. D. Emin, T.L. Aselage, J. Appl. Phys. 97, 013529 (2005). doi:10.1063/1.1823579

    Article  ADS  Google Scholar 

  13. D.S. McGregor, T.C. Unruh, W.J. McNeil, Nucl. Instrum. Methods A 591, 530–533 (2008). doi:10.1016/j.nima.2008.03.002

    Article  ADS  Google Scholar 

  14. J. Uher, S. Pospisil, V. Linhart, M. Schieber, Appl. Phys. Lett. 90, 124101 (2007). doi:10.1063/1.2713869

    Article  ADS  Google Scholar 

  15. J. Li, R. Dahal, S. Majety, J.Y. Lin, H.X. Jiang, Nucl. Instrum. Methods A 654, 417–420 (2011). doi:10.1016/j.nima.2011.07.040

    Article  ADS  Google Scholar 

  16. S. Majety, J. Li, X.K. Cao, R. Dahal, J.Y. Lin, H.X. Jiang, in Proceedings of SPIE 8507, Hard X-Ray, Gamma-Ray, and Neutron Detector Physics XIV, 85070R (2012). doi:10.1117/12.940748

  17. T.C. Doan, S. Majety, S. Grenadier, J. Li, J.Y. Lin, H.X. Jiang, Nucl. Instrum. Methods Phys. Res. A 748, 84–90 (2014). doi:10.1016/j.nima.2014.02.031

    Article  ADS  Google Scholar 

  18. Y. Kumashiro, J. Mater. Res. 5, 2933–2947 (1990). doi:10.1557/JMR.1990.2933

    Article  ADS  Google Scholar 

  19. Y. Kumashiro, T. Yokoyama, A. Sato, Y. Ando, J. Solid State Chem. 133, 314–321 (1997). doi:10.1006/jssc.1997.7493

    Article  ADS  Google Scholar 

  20. J.C. Lund, F. Olschner, F. Ahmed, K.S. Shah, Mater. Res. Soc. Symp. Proc. 162, 601–604 (1989). doi:10.1557/PROC-162-601

    Article  Google Scholar 

  21. T.P. Viles, B.A. Brunnett, H. Yoon, J.C. Lund, H. Hermon, D. Buchenauer, K. McCarty, M. Clifft, D. Dibble, R.B. James, Mater. Res. Soc. Symp. Proc. 487, 585–590 (1998). doi:10.1557/PROC-487-585

    Article  Google Scholar 

  22. H. Welker, R. Gremmelmaier, Method and device for the sensing of neutrons USPTO 2867727 A (1959)

  23. H. Welker, R. Gremmeimaier, Method and device for sensing neutrons USPTO 2988639 A (1961)

  24. D. E. Hill, Neutron detector of crystalline boron phosphide, USPTO 3113210 A (1963)

  25. S. Bakalova, R. Speller, R.J. Lacey, C. Frost, M. Kuball, Nucl. Instrum. Methods A 700, 140–144 (2013). doi:10.1016/j.nima.2012.10.035

    Article  ADS  Google Scholar 

  26. Sangeeta, K. Chennakesavulu, D.G. Desai, S.C. Sabharwal, M Alex, M.D. Ghodgaonkar, Nucl. Instrum. Methods A 571, 699–703 (2006). doi:10.1016/j.nima.2006.10.401

  27. Y.V. Burak, B.V. Padlyak, V.M. Shevel, Radiat. Eff. Defect. Solids 157, 1101–1109 (2002). doi:10.1080/10420150215791

    Article  Google Scholar 

  28. F.P. Doty, I. Zwieback, W. Ruderman, Solid state neutron detector and method for use. United States patent US 6388260 B1. 2002 May 14

  29. E. Siedland, W. Schwertführer, Atomkernenergie 11, 155 (1966)

    Google Scholar 

  30. D.J. Wooten. Electric structure of lithium tetraborate [dissertation]. [WPAFB]: Air Force Institute of Technology. 195 p. (2010)

  31. Y.V. Burak, V.T. Adamiv, I.M. Teslyuk, V.M. Shevel, Radiat. Meas. 38, 681–684 (2004). doi:10.1016/j.radmeas.2003.12.029

    Article  Google Scholar 

  32. B.I. Zadneprovski, N.V. Eremin, A.A. Paskhalov, Funct. Mater. 12, 261–268 (2005)

    Google Scholar 

  33. D. Simeone, C. Mallet, P. Dubuisson, G. Baldinozzi, C. Gervais, J. Maquet, J. Nucl. Mater. 277, 1–10 (2000). doi:10.1016/S0022-3115(99)00149-X

    Article  ADS  Google Scholar 

  34. D. Emin, J. Solid State Chem. 179, 2791–2798 (2006). doi:10.1016/j.jssc.2006.01.014

    Article  ADS  Google Scholar 

  35. M. Carrard, D. Emin, L. Zuppiroli, Phys. Rev. 51, 11270–11274 (1995). doi:10.1103/PhysRevB.51.11270

    Article  Google Scholar 

  36. A.N. Caruso, J.I. Brand, P.A. Dowben, Boron carbide particle detectors, United States Patent 7,368,794, issued May 6, 2008

  37. F.L. Pasquale, Y. Li, J.C. Du, J.A. Kelber, J. Phys.: Condens. Matter 25, 105801 (2013). doi:10.1088/0953-8984/25/10/105801

    ADS  Google Scholar 

  38. F.L. Pasquale, R. James, R. Welch, E. Echeverria, P.A. Dowben, J.A. Kelber, ECS Trans. 53, 303–310 (2013). doi:10.1149/05301.0303ecst

    Article  Google Scholar 

  39. F.L. Pasquale, J. Liu, P.A. Dowben, J.A. Kelber, Mater. Chem. Phys. 133, 901–906 (2012). doi:10.1016/j.matchemphys.2012.01.114

    Article  Google Scholar 

  40. F.A. Valente, H.I. Zagor, Phys. Rev. 69, 55 (1946). doi:10.1103/PhysRev.69.55

    Article  ADS  Google Scholar 

  41. G.A. Bartholomew, P.J. Campion, Can. J. Phys. 35, 1347 (1957). doi:10.1139/p57-147

    Article  ADS  Google Scholar 

  42. J. Meissner, H. Schatz, H. Herndl, M. Wiescher, H. Beer, F. Käppler, Phys. Rev. C 53, 977 (1996). doi:10.1103/PhysRevC.53.977

    Article  ADS  Google Scholar 

  43. E.T. Jurney, J.W. Starner, J.E. Lynn, S. Raman, Phys. Rev. C 56, 118 (1997). doi:10.1103/PhysRevC.56.118

    Article  ADS  Google Scholar 

  44. H.I. Zagor, F.A. Valente, Phys. Rev. 67, 133 (1945)

    Article  ADS  Google Scholar 

  45. R. James, F.L. Pasquale, J.A. Kelber, J. Phys.: Condens. Matter 25, 355004 (2013). doi:10.1088/0953-8984/25/35/355004

    Google Scholar 

  46. M. P. Seah, Quantification of AES and XPS. in Practical Surface Analysis, 2nd Edition; vol. 1 Auger and X-ray Photoelectron Spectroscopy,ed. by D. Briggs, M. P. Seah (Wiley, New York, 1990) pp. 200–251

  47. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, 2nd edn. (Physical Electronics, Eden Prairie, 1995)

    Google Scholar 

  48. X. Xixiang, Z. Fangqing, C. Guanghua, Chin. Sci. Bull. 16, 1338–1341 (1988)

    Google Scholar 

  49. H. Künzli, P. Gantenbein, R. Steiner, P. Oelhafen, Fresenius J. Anal. Chem. 346, 41–44 (1993). doi:10.1007/BF00321379

    Article  Google Scholar 

  50. S. Balaz, A.N. Caruso, N.P. Platt, D.I. Dimov, N.M. Boag, J.I. Brand, Y.B. Losovyj, P.A. Dowben, J. Phys. Chem. B 111, 7009–7016 (2007). doi:10.1021/jp0703760

    Article  Google Scholar 

  51. E. Echeverria, F.L. Pasquale, J.A. Colón Santana, L. Zhang, R. James, A. Sokolov, J.A. Kelber, P.A. Dowben, Mater. Lett. 110, 20–23 (2013). doi:10.1016/j.matlet.2013.08.009

    Article  Google Scholar 

  52. L. Hammarstroem, O. Johansson, Coord. Chem. Rev. 254, 2546 (2010). doi:10.1016/j.ccr.2010.01.006

    Article  Google Scholar 

  53. J.A. Colón Santana, C.M. Young, J.W. McClory, J.C. Petrosky, X. Wang, P. Liu, J. Tang, V.T. Adamiv, Ya.V. Burak, K. Fukutani, P.A. Dowben, Radiat. Meas. 5152 (2013) 99–102. doi:10.1016/j.radmeas.2013.02.021

  54. S. Lee, J. Mazurowski, G. Ramseyer, P.A. Dowben, J. Appl. Phys. 72, 4925–4933 (1992)

    Article  ADS  Google Scholar 

  55. A.A. Ahmad, N.J. Ianno, P.G. Snyder, D. Welipitiya, D. Byun, P.A. Dowben, J. Appl. Phys. 79, 8643–8647 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Defense Threat Reduction Agency (Grant No. HDTRA1-09-1-0060) and the National Aeronautics and Space Administration through Grant 13-EPSCoR-0012. The authors would like to thank Adrien LaVoie for supplying the Si(100) wafers and Shireen Adenwalla for technical assistance and discussion, Gregory S. Engel for the suggestion of pyrazine, A.N. Caruso, for suggestions regarding the signal to noise issues, and George Peterson for the capacitance measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Echeverría.

Additional information

Elena Echeverría and Robinson James have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Echeverría, E., James, R., Chiluwal, U. et al. Novel semiconducting boron carbide/pyridine polymers for neutron detection at zero bias. Appl. Phys. A 118, 113–118 (2015). https://doi.org/10.1007/s00339-014-8778-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8778-4

Keywords

Navigation