Skip to main content
Log in

Polymer-coated compliant receivers for intact laser-induced forward transfer of thin films: experimental results and modelling

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, we investigate both experimentally and numerically laser-induced forward transfer (LIFT) of thin films to determine the role of a thin polymer layer coating the receiver with the aim of modifying the rate of deceleration and reduction of material stress preventing intact material transfer. A numerical model of the impact phase during LIFT shows that such a layer reduces the modelled stress. The evolution of stress within the transferred deposit and the substrate as a function of the thickness of the polymer layer, the transfer velocity and the elastic properties of the polymer are evaluated. The functionality of the polymer layer is verified experimentally by LIFT printing intact 1- \(\upmu \)m-thick bismuth telluride films and polymeric light-emitting diode pads onto a layer of 12-\(\upmu \)m-thick polydimethylsiloxane and 50-nm-thick poly(3,4-ethylenedioxythiophene) blended with poly(styrenesulfonate) (PEDOT:PSS), respectively. Furthermore, it is demonstrated experimentally that the introduction of such a compliant layer improves adhesion between the deposit and its substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. F.J. Adrian, A study of the mechanism of metal deposition by the laser-induced forward transfer process. J. Vac. Sci. Technol. B. Microelectron. Nanometer Struct. 5(5), 1490 (1987)

    Article  ADS  Google Scholar 

  2. M.F. Ashby, D.R.H. Jones, Engineering materials 2: an introduction to microstructures, processing and design, 3 edn. Elsevier Science & Technology, Amsterdam (2006)

  3. C.-C. Chang, C.-L. Pai, W.-C. Chen, S.A. Jenekhe, Spin coating of conjugated polymers for electronic and optoelectronic applications. Thin Solid Films 479(1–2), 254–260 (2005)

    Article  ADS  Google Scholar 

  4. M. Chinmulgund, R.B. Inturi, J.A. Barnard, Effect of Ar gas pressure on growth, structure, and mechanical properties of sputtered Ti, Al, TiAl, and Ti3Al films. Thin Solid Films 270(1–2), 260–263 (1995)

    Article  ADS  Google Scholar 

  5. C. Comte, J. von Stebut, Microprobe-type measurement of Young’s modulus and Poisson coefficient by means of depth sensing indentation and acoustic microscopy. Surf. Coat. Technol. 154(1), 42–48 (2002)

    Article  Google Scholar 

  6. B.V. Derjaguin, V.M. Muller, Y.P. Toporov, Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53(2), 314–326 (1975)

    Article  Google Scholar 

  7. M. Duocastella, J.M. Fernandez-Pradas, P. Serra, J.L. Morenza, Jet formation in the laser forward transfer of liquids. Appl. Phys. A. 93(2), 453–456 (2008)

    Article  ADS  Google Scholar 

  8. D.M. Ebenstein, K.J. Wahl, A comparison of JKR-based methods to analyze quasi-static and dynamic indentation force curves. J. Colloid Interface Sci. 298(2), 652–662 (2006)

    Article  Google Scholar 

  9. R. Fardel, M. Nagel, F. Nuesch, T. Lippert, A. Wokaun, Laser-induced forward transfer of organic LED building blocks studied by time-resolved shadowgraphy. J. Phys. Chem. C. 114(12), 5617–5636 (2010)

    Google Scholar 

  10. M. Feinaeugle, A.P. Alloncle, Ph. Delaporte, C.L. Sones, R.W. Eason, Time-resolved shadowgraph imaging of femtosecond laser-induced forward transfer of solid materials. Appl. Surf. Sci. 258(22), 8475–8483 (September 2012)

    ADS  Google Scholar 

  11. M. Feinaeugle, C.L. Sones, E. Koukharenko, B. Gholipour, D.W. Hewak, R.W. Eason, Laser-induced forward transfer of intact chalcogenide thin films: resultant morphology and thermoelectric properties. Appl. Phys. A. 112(4), 1073–1079 (2013)

    ADS  Google Scholar 

  12. S.W. Han, M.D. Anwarul Hasan, K.-H. Cho, H.J. Lee, D.-H. Kim, H.W. Lee, Characterization of Bi2Te3 thin films for application in micro-thermoelectric coolers. Int. J. Modern Phys. B. 20(25n27), 4063–4068 (2006)

    ADS  Google Scholar 

  13. T. Hayashi, M. Sekine, J. Suzuki, Y. Horio, H. Takizawa, Thermoelectric and mechanical properties of angular extruded Bi0.4Sb1.6Te3 compounds. Mater. Trans. 48(10), 2724–2728 (2007)

    Google Scholar 

  14. M.E. James (ed.), Polymer data handbook. Oxford University Press, (1999)

  15. Y.-R. Jeng, M.-L. Guo, H.-C. Li, T.-F. Guo, Interfacial morphology in polymer light-emitting diodes. Electrochem. Solid State Lett. 10(12), D139 (2007)

    Google Scholar 

  16. K.L. Johnson, K. Kendall, A.D. Roberts, Surface energy and the contact of elastic solids. Proc. Royal Soc. A. Math. Phys. Eng. Sci. 324(1558), 301–313 (1971)

    ADS  Google Scholar 

  17. K.S. Kaur, R. Fardel, T.C. May-Smith, M. Nagel, D.P. Banks, C. Grivas, T. Lippert, R.W. Eason, Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films. J. Appl. Phys. 105(11), 113118–113119 (2009)

    Article  ADS  Google Scholar 

  18. U. Lang, N. Naujoks, J. Dual, Mechanical characterization of PEDOT:PSS thin films. Synth. Metals 159(5–6), 473–479 (2009)

    Article  Google Scholar 

  19. C. Liu, Recent developments in polymer MEMS. Adv. Mater. 19(22), 3783–3790 (2007)

    Article  Google Scholar 

  20. H.Y. Low, S.J. Chua, Mechanical properties of organic light-emitting thin films deposited on polymer-based barrier substrate: potential for flexible organic light-emitting displays. Mater. Lett. 2 53, 227–232 (2002)

    Article  Google Scholar 

  21. S. Mailis, I. Zergioti, G. Koundourakis, A. Ikiades, A. Patentalaki, P. Papakonstantinou, N.A. Vainos, C. Fotakis, Etching and printing of diffractive optical microstructures by a femtosecond excimer laser. Appl. Opt. 38(11), 2301–2308 (1999)

    Article  ADS  Google Scholar 

  22. H. Okuzaki, N. Ikeda, I. Kubota, T. Kunugi, Mechanical properties and structure of poly(p-phenylenevinylene) films prepared by the Zone-Reaction method. Macromolecules 32(17), 5606–5612 (1999)

    ADS  Google Scholar 

  23. A. Reddy, H. Kahn, A.H. Heuer, A MEMS-based evaluation of the mechanical properties of metallic thin films. J. Microelectromechanical Syst. 16(3), 650–658 (2007)

    Google Scholar 

  24. T. Sano, H. Yamada, T. Nakayama, I. Miyamoto. Laser induced rear ablation of metal thin films. in I. Miyamoto, Y.F. Lu, K. Sugioka, J.J. Dubowski, editors, Second International Symposium on Laser Precision Microfabrication, vol. 4426, pp. 70–73. (Spie-Int Soc Optical Engineering, Bellingham, 2002)

  25. S. Satyanarayana, R.N. Karnik, A. Majumdar, Stamp-and-stick room-temperature bonding technique for microdevices. J. Microelectromechanical Syst. 14(2), 392–399 (2005)

    Google Scholar 

  26. P. Serra, M. Colina, J.M. Fernandez-Pradas, L. Sevilla, J.L. Morenza, Preparation of functional DNA microarrays through laser-induced forward transfer. Appl. Phys. Lett. 85(9), 1639–1641 (2004)

    ADS  Google Scholar 

  27. J. Shaw-Stewart, T. Lippert, M. Nagel, F. Nüesch, A. Wokaun, Laser-induced forward transfer of polymer light-emitting diode pixels with increased charge injection. ACS Appl. Mater. Interfaces 3(2), 309–316 (2011)

    Google Scholar 

  28. J. Shaw-Stewart, T. Lippert, M. Nagel, F. Nüesch, A. Wokaun, A simple model for flyer velocity from laser-induced forward transfer with a dynamic release layer. Appl. Surf. Sci. 258(23), 9309–9313 (2012)

    ADS  Google Scholar 

  29. I.N. Sneddon, The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3(1), 47–57 (1965)

    MATH  MathSciNet  Google Scholar 

  30. E. Sollier, C. Murray, P. Maoddi, D. Di Carlo, Rapid prototyping polymers for microfluidic devices and high pressure injections. Lab Chip 11(22), 3752–3765 (2011)

    Google Scholar 

  31. C.L. Sones, M. Feinaeugle, A. Sposito, B. Gholipour, R.W. Eason, Laser-induced forward transfer-printing of focused ion beam pre-machined crystalline magneto-optic yttrium iron garnet micro-discs. Opt. Express 20(14), 15171 (2012)

    ADS  Google Scholar 

  32. D. Toet, M.O. Thompson, P.M. Smith, P.G. Carey, T.W. Sigmon. Thin film transistors fabricated in printed silicon. Jpn. J. App. Phys., 38(Part 2, No. 10A):L1149–L1152 (1999)

    Google Scholar 

  33. Y. Tong, F. Yi, L. Liu, P. Zhai, Q. Zhang, Molecular dynamics study of mechanical properties of bismuth telluride nanofilm. Physica B. Condens. Matter 405(15), 3190–3194 (2010)

    ADS  Google Scholar 

  34. Q. Vasilevskiy, J.-M. Simard, F. Belanger, F. Bernier, S. Turenne, J. L’Ecuyer. Texture formation in extruded rods of (Bi, Sb)2(Te, Se)3 thermoelectric alloys. Twenty-First International Conference on Thermoelectrics, 2002. Proceedings ICT ’02., pp. 24–27. IEEE (2002)

  35. S.M. Walley, J.E. Field. Elastic Wave Propagation in Materials. In Encyclopedia of materials: science and technology, (Elsevier, Amsterdam, 2005), pp. 1–7

  36. W. Xu, N. Chahine, T. Sulchek, Extreme hardening of PDMS thin films due to high compressive strain and confined thickness. Langmuir ACS J. Surf. Colloids 27(13), 8470–8477 (2011)

    Google Scholar 

  37. K. Zeng, F. Zhu, L. Shen, K. Zhang, H. Gong, Investigation of mechanical properties of transparent conducting oxide thin films. Thin Solid Films 443(1–2), 60–65 (2003)

    ADS  Google Scholar 

  38. I. Zergioti, D.G. Papazoglou, A. Karaiskou, N.A. Vainos, C. Fotakis, Laser microprinting of InOx active optical structures and time resolved imaging of the transfer process. Appl. Surf. Sci. 197–198, 868–872 (2002)

    Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Union via the e-LIFT project (No. 247868-FP7-ICT-2009-4) and from the Engineering and Physical Sciences Research Council (EPRSC) under Grant number EP/J008052/1 which is greatly acknowledged. We would also like to acknowledge Mark Spearing for discussion and feedback on COMSOL modelling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Feinaeugle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feinaeugle, M., Horak, P., Sones, C.L. et al. Polymer-coated compliant receivers for intact laser-induced forward transfer of thin films: experimental results and modelling. Appl. Phys. A 116, 1939–1950 (2014). https://doi.org/10.1007/s00339-014-8360-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8360-0

Keywords

Navigation