Skip to main content
Log in

Internal modification of glass by ultrashort laser pulse and its application to microwelding

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Internal modification process of glass by ultrashort laser pulse (USLP) and its applications to microwelding of glass are presented. A simulation model is developed, which can determine intensity distribution of absorbed laser energy, nonlinear absorptivity and temperature distribution at different pulse repetition rates and pulse energies in internal modification of bulk glass with fs- and ps-laser pulses from experimental modified structure. The formation process of the dual-structured internal modification is clarified, which consists of a teardrop-shaped inner structure and an elliptical outer structure, corresponding to the laser-absorbing region and heat-affected molten region, respectively. Nonlinear absorptivity at high pulse repetition rates increases due to the increase in the thermally excited free electron density for avalanche ionization. USLP enables crack-free welding of glass because the shrinkage stress is suppressed by producing embedded molten pool by nonlinear absorption process, in contrast to conventional continuous wave laser welding where cracks cannot be avoided due to shrinkage stress produced in cooling process. Microwelding techniques of glass by USLP have been developed to join glass/glass and Si/glass using optically contacted sample pairs. The strength of the weld joint as high as that of base material is obtained without pre- and post-heating in glass/glass welding. In Si/glass welding, excellent joint performances competitive with anodic bonding in terms of joint strength and process throughput have been attained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

References

  1. K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Opt. Lett. 21, 1729 (1996)

    Article  ADS  Google Scholar 

  2. K. Miura, J. Qiu, H. Inouye, T. Mitsuyu, K. Hirao, Appl. Phys. Lett. 71, 3329 (1997)

    Article  ADS  Google Scholar 

  3. A.M. Streltsov, N.F. Borrelli, J. Opt. Soc. Am. B 19, 2496 (2002)

    Article  ADS  Google Scholar 

  4. D.J. Little, M. Ams, P. Dekker, G.D. Marshall, J.M. Dawes, M.J. Withford, Opt. Express 13, 20029 (2008)

    Article  Google Scholar 

  5. D. Homoelle, S. Wielandy, A.L. Gaeta, N.F. Borrelli, C. Smith, Opt. Lett. 24, 1311 (1999)

    Article  ADS  Google Scholar 

  6. K. Minoshima, A.M. Kowalevicz, I. Hartl, E.P. Ippen, J.G. Fujimoto, Opt. Lett. 26, 1516 (2001)

    Article  ADS  Google Scholar 

  7. H. Zhang, S.M. Eaton, J. Li, A.H. Nejadmalayeri, P.R. Herman, Opt. Express 15, 4182 (2007)

    Article  ADS  Google Scholar 

  8. S. Juodkazis, H. Misawa, I. Maksimov, Appl. Phys. Lett. 85, 5239 (2004)

    Article  ADS  Google Scholar 

  9. C. Hnatovsky, R.S. Taylor, E. Simova, V.R. Bhardwaj, D.M. Rayner, P.B. Corkum, Opt. Lett. 30, 1867 (2005)

    Article  ADS  Google Scholar 

  10. T. Tamaki, W. Watanabe, J. Nishii, K. Itoh, Jpn. J. Appl. Phys. 44, L687 (2005)

    Article  ADS  Google Scholar 

  11. W. Watanabe, S. Onda, T. Tamaki, K. Itoh, J. Nishii, Appl. Phys. Lett. 89, 021106 (2006)

    Article  ADS  Google Scholar 

  12. I. Miyamoto, A. Horn, J. Gottmann, J. Laser Micro/Nanoeng 2, 7 (2007)

    Article  Google Scholar 

  13. C.B. Schaffer, J.F. Garcia, E. Mazur, Appl. Phys. A 76, 351 (2003)

    Article  ADS  Google Scholar 

  14. C.B. Schaffer, A. Brodeur, J.F. Garcia, E. Mazur, Opt. Lett. 26, 93 (2001)

    Article  ADS  Google Scholar 

  15. S. Nolte, M. Will, J. Burghoff, A. Tünnermann, J. Mod. Opt. 51, 2533 (2004)

    Article  ADS  Google Scholar 

  16. L. Shah, A.Y. Arai, S.M. Eaton, P.R. Herman, Opt. Express 13, 1999 (2005)

    Article  ADS  Google Scholar 

  17. R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, Opt. Express 13, 612 (2005)

    Article  ADS  Google Scholar 

  18. S.M. Eaton, H. Zhang, M.L. Ng, J. Li, W.J. Chen, S. Ho, P.R. Herman, Opt. Express 16, 9443 (2008)

    Article  ADS  Google Scholar 

  19. A. Arriola, S. Gross, N. Jovanovic, N. Charles, P.G. Tuthill, S.M. Olaizola, A. Fuerbach, M.J. Withford, Opt. Express 21, 2978 (2013)

    Article  ADS  Google Scholar 

  20. J. Gottmann, M. Hermans, J. Ortmann, Phys. Procedia 39, 534 (2012)

    Article  Google Scholar 

  21. Y. Bellouard, A. Champion, B. Lenssen, M. Matteucci, A. Schaap, M. Beresna, C. Corbari, M. Gecevicius, P. Kazansky, O. Chappuis, M. Kral, R. Clavel, F. Barrot, J.M. Breguet, Y. Mabillard, S. Bottinelli, M. Hopper, C. Hoenninger, E. Mottay, J. Lopez, J. Laser Micro/Nanoeng 7, 1 (2012)

    Article  Google Scholar 

  22. T. Tamaki, W. Watanabe, K. Itoh, Opt. Express 14, 10468 (2006)

    Google Scholar 

  23. I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, F. Yoshino, J. Laser Micro/Nanoeng 2, 57 (2007)

    Article  Google Scholar 

  24. I. Miyamoto, K. Cvecek, Y. Okamoto, M. Schmidt, H. Helvajian, Opt. Express 19, 22961 (2011)

    Article  ADS  Google Scholar 

  25. S. Richter, S. Doring, A. Tunnermann, S. Nolte, Appl. Phys. A 103, 257 (2011)

    Article  ADS  Google Scholar 

  26. F. Zimmermann, S. Richter, S. Döring, A. Tunnermann, S. Nolte, Appl. Opt. 52, 1149 (2013)

    Article  ADS  Google Scholar 

  27. Y. Okamoto, I. Miyamoto, K. Cvecek, A. Okada, K. Takahashi, M. Schmidt, J. Laser Micro/Nanoeng 8, 65 (2013)

    Article  Google Scholar 

  28. S.M. Eaton, H. Zhang, P.R. Herman, F. Yoshino, L. Shah, J. Bovastek, A.Y. Arai, Opt. Express 13, 4708 (2005)

    Article  ADS  Google Scholar 

  29. M. Sakakura, M. Shimizu, Y. Shimotsuma, K. Miura, K. Hirao, Appl. Phys. Lett. 93, 231112 (2008)

    Article  ADS  Google Scholar 

  30. M. Shimizu, M. Sakakura, M. Ohnishi, M. Yanaji, Y. Shimotsuma, K. Hirao, K. Miura, Opt. Express 20, 934 (2012)

    Article  ADS  Google Scholar 

  31. I. Miyamoto, K. Cvecek, M. Schmid, Opt. Express 19, 10714 (2011)

    Article  Google Scholar 

  32. I. Miyamoto, K. Cvecek, M. Schmidt, Opt. Express 21, 14291 (2013)

    Article  Google Scholar 

  33. Y. Arata, H. Maruo, I. Miyamoto, S. Tackuchi, Proc. Symp. Electron Ion Beam Sci. Technol. 7, 111 (1976)

    Google Scholar 

  34. M. Watanabe, K. Satoh, in Welding mechanics and its applications (Asakura, 1965), chap. 8

  35. T. Terasaki, J. Jpn. Weld. Soc. 78, 139 (2009)

    Google Scholar 

  36. K. Nahen, A. Vogel, J. Sel. Topics Quant. Electron. 2, 861 (1996)

    Article  Google Scholar 

  37. K. Sugioka, M. Iida, H. Takai, K. Midorikawa, Opt. Lett. 36, 2734 (2011)

    Article  ADS  Google Scholar 

  38. S. Wu, D. Wu, J. Xu, Y. Hanada, R. Suganuma, H. Wang, T. Makimura, K. Sugioka, K. Midorikawa, Opt. Express 20, 28893 (2012)

    Article  ADS  Google Scholar 

  39. T. Yoshino, Y. Ozeki, M. Matsumoto, K. Itoh, Jpn. J. Appl. Phys. 51, 102403 (2012)

    ADS  Google Scholar 

  40. F. Hashimoto, S. Richter, S. Nolte, Y. Ozeki, K. Itoh, in Proceeding of the 6th international congress on laser advanced materials processing, 2013

  41. A. Vogel, K. Nahen, D. Theisen, J. Noack, IEEE J. Quantum Electron. 4, 847 (1996)

    Google Scholar 

  42. Y.R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984)

    Google Scholar 

  43. J. Noack, A. Vogel, IEEE J. Quantum Electron. 35, 1156 (1999)

    Article  ADS  Google Scholar 

  44. C.L. Arnold, A. Heisterkamp, W. Ertmer, H. Lubatschowski, Opt. Express 15, 10303 (2007)

    Article  ADS  Google Scholar 

  45. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Clarendon, Oxford, 1959)

    Google Scholar 

  46. A.E. Siegman, S.W. Townsent, IEEE J. Quantum Electron. 29, 1212 (1993)

    Article  ADS  Google Scholar 

  47. Y. Liu, M. Shimizu, B. Zhu, Y. Dai, B. Qian, J. Qiu, Y. Shimotsuma, K. Miura, K. Hirao, Opt. Lett. 34, 136 (2009)

    Article  ADS  Google Scholar 

  48. J. Bovatsek, A. Araia, C.B. Schaffer, in Proceeding of the CLEO/Europe—EQEC2005, vol. 1, 2005

  49. K. Cvecek, I. Miyamoto, J. Strauss, M. Wolf, T. Frick, M. Schmidt, Appl. Opt. 50, 1941 (2011)

    Article  ADS  Google Scholar 

  50. A.K. Varshneya, Fundamentals of Inorganic Glasses (Academic, Boston, 1994)

    Google Scholar 

  51. P.K. Kennedy, IEEE J. Quantum Electron. 31, 2241 (1995)

    Article  ADS  Google Scholar 

  52. K. Morigaki, Physics of Amorphous Semiconductors (Imperial College Press, 1999)

  53. D. Du, X. Liu, G. Korn, J. Squier, G. Mourou, Appl. Phys. Lett. 64, 3071 (1994)

    Article  ADS  Google Scholar 

  54. B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, Phys. Rev. B 53, 1749 (1996)

    Article  ADS  Google Scholar 

  55. H. Behrens, M. Haack, J. Non Cryst. Solids 353, 4743 (2007)

    Article  ADS  Google Scholar 

  56. M. Sun, U. Eppelt, W. Schulz, J. Zhu, Opt. Mater. Express 3, 1716 (2013)

    Article  Google Scholar 

  57. M. Tavakoli, The Adhesive Bonding of Medical Devices (Medical Devices & Diagnostics Industry, 2001)

  58. B.G. Yacobi, S. Martin, K. Davis, A. Hudson, M. Hubert, J. Appl. Phys. 91, 6227 (2002)

    Article  ADS  Google Scholar 

  59. I. Miyamoto, G.A. Knorovsky, in Laser Microwelding ed. by Y. Zhou. Microjoining and Nanojoining (Woodhead Publishing, Cambridge, 2008)

  60. M. Levesque, B. Labrnche, R. Forest, E. Savard, S. Deshaies, A. Cournoyer, Phys. Procedia 5, 139 (2010)

    Article  Google Scholar 

  61. L. Schaefer, M. Schmidt, Phys. Procedia 5, 145 (2010)

    Article  Google Scholar 

  62. W. Watanabe, T. Toma, K. Yamada, J. Nishii, K. Hayashi, K. Itoh, Opt. Lett. 25, 1669 (2000)

    Article  ADS  Google Scholar 

  63. V. Greco, F. Marchesini, G. Molesini, J. Opt. A. Pure Appl. Opt. 3, 85–88 (2001)

    Article  ADS  Google Scholar 

  64. http://labaccessories.mellesgriot.com/pdfs/Cleaning_Methods.pdf. Accessed 1 Oct 2013

  65. S. Richter, S. Nolte, A. Tuennermannm, Phys. Procedia 39, 556 (2012)

    Article  Google Scholar 

  66. Y. Oki, Y. Ozeki, K. Itoh, in Proceeding of the 12th international symposium on laser precision microprocessing (LPM), 2011

  67. I. Miyamoto, A. Horn, J. Gottmann, D. Wortmann, I. Mingareev, F. Yoshino, M. Schmidt, P. Bechtold, Y. Okamoto, Y. Uno, T. Herrmann, in Proceeding of the 27th ICALEO, 2008

  68. K. Hirao, Y. Shimotsuma, J. Qiu, K. Miura, Mater. Res. Soc. Symp. Proc. 850 (2005)

  69. N. Borrelli, J. Helfinstine, J. Price, J. Schroeder, A. Atreltsov, J. Westbrook, in Proceeding of the 27th ICALEO, 2008

  70. Y. Bellouard, T. Colomb, C. Depeursinge, M. Dugan, A.A. Said, P. Bado, Opt. Express 14, 8360 (2006)

    Article  ADS  Google Scholar 

  71. P. Kongsuwan, H. Wang, S. Vukelic, Y.L. Yao, J. Manuf. Sci. Eng. 132, 041009 (2010)

    Article  Google Scholar 

  72. S.S. Kachkin, Y.V. Lisitsyn, Sov. J. Opt. Technol. 47, 159 (1980)

    Google Scholar 

  73. G. Wallis, D. Pomerantz, J. Appl. Phys. 40, 3946 (1969)

    Article  ADS  Google Scholar 

  74. M. Esashi, Microsyst. Technol. 1, 2 (1994)

    Article  Google Scholar 

  75. P.R. Mallory & Co., in Anodic Bonding. US Patent 3 397 278 (1968)

  76. Y.T. Cheng, L. Lin, J. Microelectromech. Syst. 9, 3 (2000)

    Article  Google Scholar 

  77. U.M. Mescheder, M. Alavi, K. Hiltmann, Ch. Lietzau, Ch. Nachtigall, H. Sandmaier, Sens. Actuator A 97/98, 422 (2002)

  78. M.J. Wild, A. Gillner, R. Poprawe, Sens. Actuator A 93, 63 (2001)

    Article  Google Scholar 

  79. F. Sari, M. Rupf, A. Gillner1, R. Poprawe, in Proceeding of the 3rd WLT-conference on laser in manufacturing 2005, Munich, 2005

  80. C. Luo, L. Lin, Sens. Actuator A 97/98, 398 (2002)

    Google Scholar 

  81. J.-S. Park, A.A. Tseng, in Proceeding of the 2004 JUSFA Japan US symposium on flexible automation, Denver, 2004

  82. A. Horn, I. Mingareev, A. Werth, M. Kachel, U. Brenk, Appl. Phys. A Mater. Sci. Process. 93, 171 (2008)

    Google Scholar 

  83. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, A. Mysyrowicz, Phys. Rev. Lett. 89, 186601 (2002)

    Article  ADS  Google Scholar 

  84. A. Couairona, A. Mysyrowicz, Phys. Rep. 441, 47 (2007)

    Article  ADS  Google Scholar 

  85. G.E. Jellison Jr, D.H. Lowndes, Appl. Phys. Lett. 41, 594 (1982)

    Article  ADS  Google Scholar 

  86. D. Kovalev, G. Polisski, M. Ben-Chorin, J. Diener, F. Koch, J. Appl. Phys. 80, 5978 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Erlangen Graduate School in Advanced Optical Technologies, Friedrich-Alexander University Erlangen-Nuremberg (SAOT), Germany, and Tekes, Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isamu Miyamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyamoto, I., Cvecek, K., Okamoto, Y. et al. Internal modification of glass by ultrashort laser pulse and its application to microwelding. Appl. Phys. A 114, 187–208 (2014). https://doi.org/10.1007/s00339-013-8115-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8115-3

Keywords

Navigation