Skip to main content
Log in

Commercial Ca(OH)2 nanoparticles for the consolidation of immovable works of art

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Calcium hydroxide nanoparticles are effective components for the consolidation treatment of immovable works of art, such as carbonate stone and wall paintings that exhibit both surface and structural degradation. Several formulations have been recently developed, with different characteristics (dispersing solvent, particle size distribution and particle structure), which are expected to result in different long-term consolidating properties. In this contribution, the carbonation of a commercial Ca(OH)2 nanoparticle formulation (Nanorestore®) was characterized through Fourier transform infrared (FTIR) analysis. Nanoparticle films were laid on KBr pellets and stored at room temperature under controlled relative humidity and CO2 pressure. FTIR analysis was used to quantitatively detect the formation of calcium carbonate. Fitting of the experimental data allowed the description of the mechanism of carbonate nucleation and growth. The compatibility of the Nanorestore® formulation for wall painting consolidation was assessed through optical and electron microscopy, colorimetry and water absorption capillarity measurements. The formulation’s effectiveness in consolidating powdering painted layers was assessed through application on site and on detached samples of Mesoamerican wall paintings belonging to the pre-Columbian archaeological sites of Ixcaquixtla and Calakmul (Mexico).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K. Zehnder, A. Arnold, J. Cryst. Growth 97, 513 (1989)

    Article  ADS  Google Scholar 

  2. L. Dei, M. Mauro, P. Baglioni, C. Manganelli del Fà, F. Fratini, Langmuir 15, 8915 (1999)

    Article  Google Scholar 

  3. G.W. Scherer, Cem. Concr. Res. 34, 1613 (2004)

    Article  Google Scholar 

  4. D.E. Rawlings, D.B. Johnson, Microbiology 153, 315 (2007)

    Article  Google Scholar 

  5. G.M. Gadd, Mycol. Res. 111, 3 (2007)

    Article  Google Scholar 

  6. C.V. Horie, Materials for Conservation: Organic Consolidants, Adhesives and Coatings, 2nd edn. (Butterworth-Heinemann, London, 2000)

    Google Scholar 

  7. E. Carretti, L. Dei, Prog. Org. Coat. 49, 282 (2004)

    Article  Google Scholar 

  8. M. Favaro, R. Mendichi, F. Ossola, U. Russo, S. Simon, P. Tommasin, P.A. Vigato, Polym. Degrad. Stab. 91, 3083 (2006)

    Article  Google Scholar 

  9. P. Baglioni, D. Chelazzi, R. Giorgi, G. Poggi, Langmuir 29, 5110 (2013)

    Article  Google Scholar 

  10. R. Giorgi, L. Dei, P. Baglioni, Stud. Conserv. 45, 154 (2000)

    Google Scholar 

  11. M. Ambrosi, L. Dei, R. Giorgi, C. Neto, P. Baglioni, Langmuir 17, 4251 (2001)

    Article  Google Scholar 

  12. R. Giorgi, M. Ambrosi, N. Toccafondi, P. Baglioni, Chem. Eur. J. 16, 9374 (2010)

    Article  Google Scholar 

  13. D. Chelazzi, G. Poggi, Y. Jaidar, N. Toccafondi, R. Giorgi, P. Baglioni, J. Colloid Interface Sci. 392, 42 (2013)

    Article  Google Scholar 

  14. S. Sequeira, C. Casanova, E.J. Cabrita, J. Cult. Herit. 7, 264 (2006)

    Article  Google Scholar 

  15. E. Stefanis, C. Panayiotou, Restaurator 28, 185 (2007)

    Article  Google Scholar 

  16. V. Daniele, G. Taglieri, R. Quaresima, J. Cult. Herit. 9, 294 (2008)

    Article  Google Scholar 

  17. V. Daniele, G. Taglieri, J. Cult. Herit. 11, 102 (2010)

    Article  Google Scholar 

  18. K. Yura, K.C. Fredrikson, E. Matijevic, Colloids Surf. 50, 281 (1990)

    Article  Google Scholar 

  19. L.A. Pérez-Maqueda, L. Wang, E. Matijević, Langmuir 14, 4397 (1998)

    Article  Google Scholar 

  20. B. Salvadori, L. Dei, Langmuir 17, 2371 (2001)

    Article  Google Scholar 

  21. A. Nanni, L. Dei, Langmuir 19, 933 (2003)

    Article  Google Scholar 

  22. J. Xu, Q.H. Chen, Q.R. Qian, Chem. Res. Chin. Univ. 20, 229 (2004)

    Google Scholar 

  23. M. Sternitzke, J. Eur. Ceram. Soc. 17, 1061 (1997)

    Article  Google Scholar 

  24. L. Dei, B. Salvadori, J. Cult. Herit. 7, 110 (2006)

    Article  Google Scholar 

  25. P. Lòpez-Arce, L.S. Gomez-Villalba, L. Pinho, M.E. Fernàndez-Valle, M. Álvarez de Buergo, R. Fort, Mater. Charact. 61, 168 (2010)

    Article  Google Scholar 

  26. P. Lòpez-Arce, L.S. Gomez-Villalba, S. Martìnez-Ramìrez, M. Álvarez de Buergo, R. Fort, Powder Technol. 205, 263 (2011)

    Article  Google Scholar 

  27. B. Salvadori, V. Errico, M. Mauro, E. Melnik, L. Dei, Spectrosc. Lett. 36, 501 (2003)

    Article  ADS  Google Scholar 

  28. F.A. Andersen, L. Brečević, Acta Chem. Scand. 45, 1018 (1991)

    Article  Google Scholar 

  29. E. Fratini, M.G. Page, R. Giorgi, H. Colfen, P. Baglioni, B. Demé, Langmuir 23, 2330 (2007)

    Article  Google Scholar 

  30. V. Prigiobbe, A. Polettini, R. Baciocchi, Chem. Eng. J. 148, 270 (2009)

    Article  Google Scholar 

  31. B. Chen, M.L. Laucks, J. Davis, Aerosol Sci. Technol. 38, 588 (2004)

    Article  Google Scholar 

  32. O.L. Shtepenko, C.D. Hills, N.J. Coleman, A. Brough, Environ. Sci. Technol. 39, 345 (2005)

    Article  ADS  Google Scholar 

  33. S. Stendardo, P.U. Foscolo, Chem. Eng. Sci. 64, 2343 (2009)

    Article  Google Scholar 

  34. S. Kashef-Haghighi, S. Ghoshal, Ind. Eng. Chem. Res. 49, 1143 (2010)

    Article  Google Scholar 

  35. R. Zevenhoven, S. Teir, S. Eloneva, Energy 33, 362 (2008)

    Article  Google Scholar 

  36. M. Fernandez Bertos, S.J.R. Simons, C.D. Hills, P.J. Carey, J. Hazard. Mater. B 112, 193 (2004)

    Article  Google Scholar 

  37. P. Sun, J.R. Grace, C.J. Lim, E.J. Anthony, Chem. Eng. Sci. 63, 57 (2008)

    Article  Google Scholar 

  38. D.T. Beruto, R. Botter, J. Eur. Ceram. Soc. 20, 479 (2000)

    Article  Google Scholar 

  39. R.M. Dheilly, J. Tudo, Y. Sebaïbi, M. Quéneudec, Constr. Build. Mater. 16, 155 (2002)

    Article  Google Scholar 

  40. M. Avrami, J. Chem. Phys. 7, 1103 (1939)

    Article  ADS  Google Scholar 

  41. M. Avrami, J. Chem. Phys. 8, 212 (1939)

    Article  ADS  Google Scholar 

  42. M. Avrami, J. Chem. Phys. 9, 177 (1940)

    Article  ADS  Google Scholar 

  43. E. Carretti, D. Chelazzi, G. Rocchigiani, P. Baglioni, G. Poggi, L. Dei, Langmuir (2013). doi:10.1021/la401883g

    Google Scholar 

Download references

Acknowledgements

The Ministry for Education and Research (MIUR, PRIN-2009-P2WEAT) is gratefully acknowledged for partial financial support. Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), the University of Florence and the European Union (project NANOFORART, FP7-ENV-NMP-2011/282816) are also acknowledged for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Baglioni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baglioni, P., Chelazzi, D., Giorgi, R. et al. Commercial Ca(OH)2 nanoparticles for the consolidation of immovable works of art. Appl. Phys. A 114, 723–732 (2014). https://doi.org/10.1007/s00339-013-7942-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7942-6

Keywords

Navigation