Skip to main content
Log in

Comparison of influence of incorporated 3d-, 4d- and 4f-metal chlorides on electronic properties of single-walled carbon nanotubes

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present work, the channels of single-walled carbon nanotubes were filled with melts of ZnCl2, CdCl2, and TbCl3 by a capillary method with subsequent slow cooling. The detailed study of electronic structure of filled nanotubes was performed using Raman, optical absorption, and X-ray photoelectron spectroscopy. The obtained data are in mutual agreement and it proves that the filling of carbon nanotube channels with all these salts leads to the charge transfer from nanotube walls to the incorporated compounds, thus acceptor doping of nanotubes takes place. It was found out that encapsulated terbium chloride has the largest influence on the electronic properties of carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. W.A. De Heer, J.M. Bonard, K. Fauth, A. Chatelain, D. Ugarte, L. Forro, Adv. Mater. 9, 87 (1997)

    Article  Google Scholar 

  2. J. Kong, N.R. Franklin, C.W. Zhou, M.G. Chapline, S. Peng, K.J. Cho, H.J. Dai, Science 287, 622 (2000)

    Article  ADS  Google Scholar 

  3. A.M. Fennimore, T.D. Yuzvinsky, W.Q. Han, M.S. Fuhrer, J. Cumings, A. Zettl, Nature 424, 408 (2003)

    Article  ADS  Google Scholar 

  4. R.J. Chen, S. Bangsaruntip, K.A. Drouvalakis, N.W.S. Kam, M. Shim, Y.M. Li et al., Proc. Natl. Acad. Sci. USA 100, 4984 (2003)

    Article  ADS  Google Scholar 

  5. Z. Chen, J. Appenzeller, Y.-M. Lin, J. Sippel-Oakley, A.G. Rinzler, J. Tang, S.J. Wind, P.M. Solomon, P. Avouris, Science 311, 1735 (2006)

    Article  Google Scholar 

  6. M.V. Kharlamova, J.J. Niu, J. Exp. Theor. Phys. 115, 485 (2012)

    Article  ADS  Google Scholar 

  7. M.S. Dresselhaus, Nature 358, 195 (1992)

    Article  ADS  Google Scholar 

  8. J.W. Mintmire, B.I. Dunlap, C.T. White, Phys. Rev. Lett. 68, 631 (1992)

    Article  ADS  Google Scholar 

  9. R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Mater. Sci. Eng. B 19, 185 (1993)

    Article  Google Scholar 

  10. T. Pichler, X. Liu, M. Knupfer, J. Fink, New J. Phys. 5, 156 (2003)

    Article  ADS  Google Scholar 

  11. M.V. Kharlamova, J.J. Niu, Appl. Phys. A 109, 25 (2012)

    Article  ADS  Google Scholar 

  12. A. Penicaud, P. Poulin, A. Derre, E. Anglaret, P. Petit, J. Am. Chem. Soc. 127, 8 (2005)

    Article  Google Scholar 

  13. R.S. Lee, H.J. Kim, J.E. Fischer, A. Thess, R.E. Smalley, Nature 388, 255 (1997)

    Article  ADS  Google Scholar 

  14. M.V. Kharlamova, J.J. Niu, JETP Lett. 95, 314 (2012)

    Article  ADS  Google Scholar 

  15. A.M. Rao, P.C. Eklund, S. Bandow, A. Thess, R.E. Smalley, Nature 388, 257 (1997)

    Article  ADS  Google Scholar 

  16. A.A. Eliseev, L.V. Yashina, M.M. Brzhezinskaya, M.V. Chernysheva, M.V. Kharlamova, N.I. Verbitsky, A.V. Lukashin, N.A. Kiselev, A.S. Kumskov, R.M. Zakalyuhin, J.L. Hutchison, B. Freitag, A.S. Vinogradov, Carbon 48, 2708 (2010)

    Article  Google Scholar 

  17. M.V. Kharlamova, L.V. Yashina, A.A. Volykhov, J.J. Niu, V.S. Neudachina, M.M. Brzhezinskaya, T.S. Zyubina, A.I. Belogorokhov, A.A. Eliseev, Eur. Phys. J. B 85, 34 (2012)

    ADS  Google Scholar 

  18. M.V. Kharlamova, A.A. Eliseev, L.V. Yashina, D.I. Petukhov, C.-P. Liu, C.-Y. Wang, D.A. Semenenko, A.I. Belogorokhov, JETP Lett. 91, 196 (2010)

    Article  ADS  Google Scholar 

  19. M.V. Kharlamova, L.V. Yashina, A.A. Eliseev, A.A. Volykhov, V.S. Neudachina, M.M. Brzhezinskaya, T.S. Zyubina, A.V. Lukashin, Yu.D. Tretyakov, Phys. Status Solidi B 249, 2328 (2012)

    Article  ADS  Google Scholar 

  20. L.J. Li, A.N. Khlobystov, J.G. Wiltshire, G.A.D. Briggs, R.J. Nicholas, Nat. Mater. 4, 481 (2005)

    Article  ADS  Google Scholar 

  21. L.V. Yashina, A.A. Eliseev, M.V. Kharlamova, A.A. Volykhov, A.V. Egorov, S.V. Savilov, A.V. Lukashin, R. Püttner, A.I. Belogorokhov, J. Phys. Chem. C 115, 3578 (2011)

    Article  Google Scholar 

  22. A.A. Eliseev, L.V. Yashina, N.I. Verbitskiy, M.M. Brzhezinskaya, M.V. Kharlamova, M.V. Chernysheva, A.V. Lukashin, N.A. Kiselev, A.S. Kumskov, B. Freitag, A.V. Generalov, A.S. Vinogradov, Y.V. Zubavichus, E. Kleimenov, M. Nachtegaal, Carbon 50, 4021 (2012)

    Article  Google Scholar 

  23. J. Lu, S. Nagase, D.P. Yu, H. Ye, R. Han, Z. Gao, S. Zhang, L. Peng, Phys. Rev. Lett. 93, 116804 (2004)

    Article  ADS  Google Scholar 

  24. T. Takenobu, T. Takano, M. Shiraishi, Y. Murakami, M. Ata, H. Kataura, Y. Achiba, Y. Iwasa, Nat. Mater. 2, 683 (2003)

    Article  ADS  Google Scholar 

  25. H. Shiozawa, T. Pichler, C. Kramberger, A. Grüneis, M. Knupfer, B. Büchner, V. Zylyomi, J. Koltai, J. Kürti, D. Batchelor, H. Kataura, Phys. Rev. B, Condens. Matter 77, 153402 (2008)

    Article  ADS  Google Scholar 

  26. R.J. Baierle, S.B. Fagan, R. Mota, A.J.R. da Silva, A. Fazzio, Phys. Rev. B, Condens. Matter 64, 085413 (2001)

    Article  ADS  Google Scholar 

  27. S.B. Fagan, R. Mota, A.J.R. da Silva, A. Fazzio, Nano Lett. 4, 975 (2004)

    Article  ADS  Google Scholar 

  28. A.A. Eliseev, M.V. Kharlamova, M.V. Chernysheva, A.V. Lukashin, Yu.D. Tretyakov, A.S. Kumskov, N.A. Kiselev, Russ. Chem. Rev. 78, 833 (2009)

    Article  ADS  Google Scholar 

  29. W.Y. Choi, J.W. Kang, H.J. Hwang, Phys. Rev. B, Condens. Matter 68, 193405 (2003)

    Article  ADS  Google Scholar 

  30. S.B. Fagan, A.G.S. Filho, J.M. Filho, P. Corio, M.S. Dresselhaus, Chem. Phys. Lett. 406, 54 (2005)

    Article  ADS  Google Scholar 

  31. K. Hirahara, K. Suenaga, S. Bandow, H. Kato, T. Okazaki, H. Shinohara, S. Iijima, Phys. Rev. Lett. 85, 5384 (2000)

    Article  ADS  Google Scholar 

  32. E.L. Sceats, J.C. Green, S. Reich, Phys. Rev. B, Condens. Matter 73, 125441 (2006)

    Article  ADS  Google Scholar 

  33. S.B. Fagan, R. Mota, A.J.R. da Silva, A. Fazzio, Phys. Rev. B, Condens. Matter 67, 205414 (2003)

    Article  ADS  Google Scholar 

  34. A. Ilie, J.S. Bendall, K. Nagaoka, S. Egger, T. Nakayama, S. Crampin, ACS Nano 5, 2559 (2011)

    Article  Google Scholar 

  35. A.V. Krestinin, M.B. Kislov, A.G. Ryabenko, in Mathematics, Physics and Chemistry, ed. by S. Gucery, Y.G. Gogotsi, V. Kuznetsov. NATO Science Series II, vol. 169 (Kluwer Academic, Dordrecht, 2004), p. 107

    Google Scholar 

  36. A.V. Krestinin, N.A. Kiselev, A.V. Raevskii, A.G. Ryabenko, D.N. Zakharov, G.I. Zvereva, Eurasian Chem.-Technol. J. 5, 7 (2003)

    Google Scholar 

  37. M. Monthioux, E. Flahaut, J.P. Cleuziou, J. Mater. Res. 21, 2774 (2006)

    Article  ADS  Google Scholar 

  38. M. Monthioux, Carbon 40, 1809 (2002)

    Article  Google Scholar 

  39. M.S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G.S. Filho, R. Saito, Carbon 40, 2043 (2002)

    Article  Google Scholar 

  40. A. Jorio, M. Pimenta, A.S. Filho, R. Saito, G. Dresselhaus, M.S. Dresselhaus, New J. Phys. 5, 139 (2003)

    Article  ADS  Google Scholar 

  41. P. Corio, A.P. Santos, P.S. Santos, M.L.A. Temperini, V.W. Brar, M.A. Pimenta, M.S. Dresselhaus, Chem. Phys. Lett. 383, 475 (2004)

    Article  ADS  Google Scholar 

  42. M.V. Chernysheva, A.A. Eliseev, A.V. Lukashin, Y.D. Tretyakov, S.V. Savilov, N.A. Kiselev, O.M. Zhigalina, A.S. Kumskov, A.V. Krestinin, J.L. Hutchison, Physica E 37, 62 (2007)

    Article  ADS  Google Scholar 

  43. A.S. Kumskov, V.G. Zhigalina, A.L. Chuvilin, N.I. Verbitskiy, A.G. Ryabenko, D.D. Zaytsev, A.A. Eliseev, N.A. Kiselev, Carbon 50, 4696 (2012)

    Article  Google Scholar 

  44. M.V. Chernysheva, E.A. Kiseleva, N.I. Verbitskii, A.A. Eliseev, A.V. Lukashin, Y.D. Tretyakov, S.V. Savilov, N.A. Kiselev, O.M. Zhigalina, A.S. Kumskov, A.V. Krestinin, J.L. Hutchison, Physica E 40, 2283 (2008)

    Article  ADS  Google Scholar 

  45. R.M. Zakalyukin, B.N. Mavrin, L.N. Dem’yanets, Carbon 46, 1574 (2008)

    Article  Google Scholar 

  46. P.A. Khomyakov, G. Giovannetti, P.C. Rusu, G. Brocks, J. van den Brink, P.J. Kelly, Phys. Rev. B 79, 195425 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

SWCNTs were synthesized by Dr. A.V. Krestinin (Institute of Problems of Chemical Physics RAS, Chernogolovka, Russia). M.V. Kharlamova thanks Dr. J.J. Niu (Drexel University, USA) and Dr. A. Egorov (Lomonosov Moscow State University, Russia) for the HRTEM measurements and Dr. L.V. Yashina (OJSC “GIREDMET”, Russia) for the X-ray photoelectron spectroscopy measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Kharlamova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kharlamova, M.V. Comparison of influence of incorporated 3d-, 4d- and 4f-metal chlorides on electronic properties of single-walled carbon nanotubes. Appl. Phys. A 111, 725–731 (2013). https://doi.org/10.1007/s00339-013-7639-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7639-x

Keywords

Navigation