Skip to main content
Log in

Laser-induced forward transfer of intact chalcogenide thin films: resultant morphology and thermoelectric properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We present a laser-based transfer method for the novel application of fabricating elements for planar thermoelectric devices. Thin films of thermoelectric chalcogenides (Bi2Te3, Bi2Se3 and Bi0.5Sb1.5Te3) were printed via laser-induced forward transfer (LIFT) onto polymer-coated substrates over large areas of up to ∼15 mm2 in size. A morphological study showed that it was possible to partially preserve the polycrystalline structure of the transferred films. The films’ Seebeck coefficients after LIFT transfer were measured and resulted in −49±1 μV/K, −93±8 μV/K and 142±3 μV/K for Bi2Te3, Bi2Se3 and Bi0.5Sb1.5Te3, respectively, which were found to be ∼23±6 % lower compared to their initial values. This demonstration shows that LIFT is suitable to transfer sensitive, functional semiconductor materials over areas up to ∼15 mm2 with minimal damage onto a non-standard polymer-coated substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Zhu, S. Beeby, J. Tudor, N. Harris, in PowerMEMS 2009, Washington, DC, USA (2009), pp. 201–204

    Google Scholar 

  2. K.M. Saqr, M.N. Musa, Therm. Sci. 13, 165–174 (2009)

    Article  Google Scholar 

  3. G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105–114 (2008)

    Article  ADS  Google Scholar 

  4. Organic Electronics Association, White Paper: OE-A Roadmap for Organic and Printed Electronics, 4th edn. (OE-A, 2011), pp. 76–106

  5. F.J. Adrian, J. Bohandy, B.F. Kim, A.N. Jette, P. Thompson, J. Vac. Sci. Technol., B Microelectron. Nanometer Struct. Process. Meas. Phenom. 5, 1490 (1987)

    Article  ADS  Google Scholar 

  6. D.A. Willis, V. Grosu, Appl. Surf. Sci. 253, 4759–4763 (2007)

    Article  ADS  Google Scholar 

  7. M. Domke, S. Rapp, M. Schmidt, H.P. Huber, Appl. Phys. A 109(2), 409–420 (2012). doi:10.1007/s00339-012-7072-6

    Article  ADS  Google Scholar 

  8. T.C. Röder, J.R. Köhler, Appl. Phys. Lett. 100, 071603 (2012)

    Article  ADS  Google Scholar 

  9. C.B. Arnold, P. Serra, A. Pique, Mater. Res. Soc. Bull. 32, 23–31 (2007)

    Article  Google Scholar 

  10. B. Hopp, T. Smausz, N. Kresz, N. Barna, Z. Bor, L. Kolozsvári, D.B. Chrisey, A. Szabó, A. Nógrádi, Tissue Eng. 11, 1817–1823 (2005)

    Article  Google Scholar 

  11. A. Doraiswamy, R.J. Narayan, T. Lippert, L. Urech, A. Wokaun, M. Nagel, B. Hopp, M. Dinescu, R. Modi, R.C.Y. Auyeung, D.B. Chrisey, Appl. Surf. Sci. 252, 4743–4747 (2006)

    Article  ADS  Google Scholar 

  12. C. Germain, L. Charron, L. Lilge, Y.Y. Tsui, Appl. Surf. Sci. 253, 8328–8333 (2007)

    Article  ADS  Google Scholar 

  13. G. Oosterhuis, B.H. in’t Veld, G. Ebberink, D.A. del Cerro, E. van den Eijnden, P. Chall, B. van der Zon, in 2010 IEEE Int. 3D Systems Integration Conf. (3DIC) (IEEE Press, New York, 2010), pp. 1–5

    Chapter  Google Scholar 

  14. J. Shaw-Stewart, T. Lippert, M. Nagel, F. Nüesch, A. Wokaun, ACS Appl. Mater. Interfaces 3, 309–316 (2011)

    Article  Google Scholar 

  15. M. Christensen, A.B. Abrahamsen, N.B. Christensen, F. Juranyi, N.H. Andersen, K. Lefmann, J. Andreasson, C.R.H. Bahl, B.B. Iversen, Nat. Mater. 7, 811–815 (2008)

    Article  ADS  Google Scholar 

  16. K. Kadel, L. Kumari, W.Z. Li, J.Y. Huang, P.P. Provencio, Nanoscale Res. Lett. 6, 1–7 (2010)

    Google Scholar 

  17. G.R. Elliott, G.S. Murugan, J.S. Wilkinson, M.N. Zervas, D.W. Hewak, Opt. Express 18, 26720–26727 (2010)

    Article  ADS  Google Scholar 

  18. M.L. Tseng, B.H. Chen, C.H. Chu, C.M. Chang, W.C. Lin, N.N. Chu, M. Mansuripur, A.Q. Liu, D.P. Tsai, Opt. Express 19, 16975–16984 (2011)

    Article  ADS  Google Scholar 

  19. W. Glatz, E. Schwyter, L. Durrer, C. Hierold, J. Microelectromech. Syst. 18, 763–772 (2009)

    Article  Google Scholar 

  20. E. Koukharenko, X. Li, I. Nandhakumar, N. Frety, S.P. Beeby, D. Cox, M.J. Tudor, B. Schiedt, C. Trautmann, A. Bertsch, N.M. White, J. Micromech. Microeng. 18, 104015 (2008)

    Article  ADS  Google Scholar 

  21. M.F. Demirbas, Energy Sources 1, 85–95 (2006)

    Article  Google Scholar 

  22. T. Mattle, J. Shaw-Stewart, C.W. Schneider, T. Lippert, A. Wokaun, Appl. Surf. Sci. 258, 9352–9354 (2012)

    Article  ADS  Google Scholar 

  23. M. Feinaeugle, A.P. Alloncle, P. Delaporte, C.L. Sones, R.W. Eason, Appl. Surf. Sci. 258, 8475–8483 (2012)

    Article  ADS  Google Scholar 

  24. D.P. Banks, C. Grivas, J.D. Mills, R.W. Eason, I. Zergioti, Appl. Phys. Lett. 89, 193107 (2006)

    Article  ADS  Google Scholar 

  25. J. Bohandy, B.F. Kim, F.J. Adrian, J. Appl. Phys. 60, 1538–1539 (1986)

    Article  ADS  Google Scholar 

  26. Y. Feutelais, B. Legendre, N. Rodier, V. Agafonov, Mater. Res. Bull. 28, 591–596 (1993)

    Article  Google Scholar 

  27. M.Y. Pang, H.F. Lui, W.S. Li, K.H. Wong, C. Surya, J. Phys. Conf. Ser. 152, 012046 (2009)

    Article  ADS  Google Scholar 

  28. H. Bottner, J. Nurnus, A. Gavrikov, G. Kuhner, M. Jagle, C. Kunzel, D. Eberhard, G. Plescher, A. Schubert, K.H. Schlereth, J. Microelectromech. Syst. 13, 414–420 (2004)

    Article  Google Scholar 

  29. A. Al Bayaz, A. Giani, A. Foucaran, E. Pascal-Delannoy, A. Boyer, Thin Solid Films 441, 1–5 (2003)

    Article  ADS  Google Scholar 

  30. J. Kuleshova, E. Koukharenko, X.H. Li, N. Frety, I.S. Nandhakumar, J. Tudor, S.P. Beeby, N.M. White, Langmuir 26, 16980–16985 (2010)

    Article  Google Scholar 

  31. D. Bourgault, C.G. Garampon, N. Caillault, L. Carbone, J.A. Aymami, Thin Solid Films 516, 8579–8583 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the e-LIFT project (no. 247868-FP7-ICT-2009-4), which is greatly acknowledged. Additional funding was received from the Engineering and Physical Sciences Research Council (EPSRC), UK, via grant number EP/J008052/1. We also want to greatly acknowledge Neil White to enable access to the Seebeck coefficient testing facilities, and Jonathan Butement and James Grant-Jacob for the technical advice in preparation of the receiver films.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Feinaeugle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feinaeugle, M., Sones, C.L., Koukharenko, E. et al. Laser-induced forward transfer of intact chalcogenide thin films: resultant morphology and thermoelectric properties. Appl. Phys. A 112, 1073–1079 (2013). https://doi.org/10.1007/s00339-012-7491-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7491-4

Keywords

Navigation