Skip to main content
Log in

Analysis of time-of-flight distributions under pulsed laser ablation in vacuum based on the DSMC calculations

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A theoretical study of the time-of-flight (TOF) distributions under pulsed laser ablation has been performed. 2D simulations of pulsed evaporation of atoms into vacuum on the base of the direct simulation Monte Carlo (DSMC) method have been carried out. It is found that for large evaporating spots (when the spot radius exceeds the initial plume length by a factor of five) the TOF distributions practically do not change with the spot radius variation. Moreover, it is shown that such distributions can be obtained from 1D calculations. Thus, in the frames of 1D approach, the TOF distribution is a function only of the number of the evaporated monolayers, but not of the spot radius. The shape of the TOF distribution is shown to strongly depend on the amount of the evaporated matter. Based on the calculated TOF distributions, dependence of the particle kinetic energy on the number of the evaporated monolayers has been obtained. To verify the theoretical results, experimental data on laser ablation of niobium and mercury have been used, which confirm the obtained dependences. The obtained results allow estimating the irradiated surface temperature from the TOF distributions for monatomic neutral gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Kelly, R.W. Dreyfus, Surf. Sci. 198, 263 (1988)

    Article  ADS  Google Scholar 

  2. N.Y. Bykov, N.M. Bulgakova, A.V. Bulgakov, G.A. Loukianov, Appl. Phys. A 79, 1097 (2004)

    Article  ADS  Google Scholar 

  3. J.C.S. Kools, T.S. Baller, S.T. De Zwart, J. Dieleman, J. Appl. Phys. 71, 4547 (1992)

    Article  ADS  Google Scholar 

  4. L.V. Zhigilei, B.J. Garrison, Appl. Phys. Lett. 71, 551 (1997)

    Article  ADS  Google Scholar 

  5. G.A. Bird, Molecular Gas Dynamics and the Direct Simulation Monte Carlo Method (Clarendon, Oxford, 1994)

    Google Scholar 

  6. I. NoorBatcha, R.R. Lucchese, Y. Zeiri, J. Chem. Phys. 89, 5251 (1988)

    Article  ADS  Google Scholar 

  7. I. NoorBatcha, R.R. Lucchese, Y. Zeiri, Surf. Sci. 200, 113 (1988)

    Article  ADS  Google Scholar 

  8. D. Sibold, H.M. Urbassek, J. Appl. Phys. 73, 8544 (1993)

    Article  ADS  Google Scholar 

  9. H.M. Urbassek, D. Sibold, Phys. Rev. Lett. 70, 1886 (1993)

    Article  ADS  Google Scholar 

  10. T.E. Itina, L. Patrone, W. Marine, M. Autric, Appl. Phys. A 69, S59 (1999)

    ADS  Google Scholar 

  11. O. Ellegaard, J. Schou, H.M. Urbassek, Appl. Phys. A 69, S577 (1999)

    Article  ADS  Google Scholar 

  12. A.A. Morozov, Appl. Phys. A 79, 997 (2004)

    Article  ADS  Google Scholar 

  13. N.M. Bulgakova, A.V. Bulgakov, Appl. Phys. A 73, 199 (2001)

    Article  ADS  Google Scholar 

  14. E.V. Titov, D.A. Levin, Int. J. Comput. Fluid Dyn. 21, 351 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Sibold, H.M. Urbassek, Phys. Fluids A 4, 165 (1992)

    Article  ADS  MATH  Google Scholar 

  16. J.P. Cowin, D.J. Auerbach, C. Becker, L. Wharton, Surf. Sci. 78, 545 (1978)

    Article  ADS  Google Scholar 

  17. W.C. Natzle, D. Padowitz, S.J. Sibener, J. Chem. Phys. 88, 7975 (1988)

    Article  ADS  Google Scholar 

  18. A. Namiki, K. Katoh, Y. Yamashita et al., J. Appl. Phys. 70, 3268 (1991)

    Article  ADS  Google Scholar 

  19. R.P. van Ingen, J. Appl. Phys. 76, 8065 (1994)

    Article  ADS  Google Scholar 

  20. D.J. Krajnovich, J. Chem. Phys. 102, 726 (1995)

    Article  ADS  Google Scholar 

  21. J.W. Elam, D.H. Levy, J. Appl. Phys. 81, 539 (1997)

    Article  ADS  Google Scholar 

  22. A.A. Morozov, A.B. Evtushenko, A.V. Bulgakov, in preparation

  23. T.D. Bennett, M. Farrelly, J. Heat Transf. 122, 345 (2000)

    Article  Google Scholar 

  24. R.C. Reid, J.M. Prausnitz, T.K. Sherwood, The Properties of Gases and Liquids (McGraw-Hill, New York, 1977)

    Google Scholar 

Download references

Acknowledgements

The author thanks A.V. Bulgakov and A.B. Evtushenko for fruitful discussions. The work was supported by grant of the Russian Foundation for Basic Research (No. 11-08-00100), by the Leading Scientific School (Grant No. 523.2012.1), and by the Federal Target Program (Grant No. 8583).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey A. Morozov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morozov, A.A. Analysis of time-of-flight distributions under pulsed laser ablation in vacuum based on the DSMC calculations. Appl. Phys. A 111, 1107–1112 (2013). https://doi.org/10.1007/s00339-012-7325-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7325-4

Keywords

Navigation