Skip to main content
Log in

Size dependent transition enthalpy in PbTiO3 nanoparticles due to a cubic surface layer

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Size dependence of transition enthalpy observed in ferroelectric PbTiO3 nanoparticles has been shown to result from volume averaging or the surface dilution effect rather than size induced reduction of spontaneous polarization at the first-order phase transition temperature. The PbTiO3 nanoparticles are suggested to be composed of a cubic surface layer with size independent thickness and a ferroelectric core having nonzero and size independent spontaneous polarization at the transition point. Based on a surface layer model, thickness of the cubic surface layer at the Curie temperature is estimated to be around 5–8 nm for PbTiO3 nanoparticles from the literature-reported transition enthalpy data. The present analyses indicate that the size effect in ferroelectrics is possibly a surface related extrinsic effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. F. Jona, G. Shirane, Ferroelectric Crystals (Dover, New York, 1993)

    Google Scholar 

  2. E. Fatuzzo, W.J. Merz, Ferroelectricity (North-Holland, Amsterdam, 1967)

    Google Scholar 

  3. G.A. Rossetti, J.P. Cline, A. Navrotsky, J. Mater. Res. 13, 3197 (1998)

    Article  ADS  Google Scholar 

  4. K. Ishikawa, K. Yoshikawa, N. Okada, Phys. Rev. B 37, 5852 (1988)

    Article  ADS  Google Scholar 

  5. W.L. Zhong, B. Jiang, P.L. Zhang, J.M. Ma, H.M. Cheng, Z.H. Yang, L.X. Li, J. Phys. Condens. Matter 5, 2619 (1993)

    Article  ADS  Google Scholar 

  6. S. Chattopadhyay, P. Ayyub, V.R. Palkar, M. Multani, Phys. Rev. B 52, 13177 (1995)

    Article  ADS  Google Scholar 

  7. E.K. Akdogan, C.J. Rawn, W.D. Porter, E.A. Payzant, A. Safari, J. Appl. Phys. 97, 084305 (2005)

    Article  ADS  Google Scholar 

  8. E. Erdem, H.-C. Semmelhack, R. Böttcher, H. Rumpf, J. Banys, A. Matthes, H.-J. Gläsel, D. Hirsch, E. Hartmann, J. Phys. Condens. Matter 18, 3861 (2006)

    Article  ADS  Google Scholar 

  9. K. Uchino, E. Sadanaga, T. Hirose, J. Am. Ceram. Soc. 72, 1555 (1989)

    Article  Google Scholar 

  10. R. Böttcher, C. Klimm, D. Michel, H.-C. Semmelhack, G. Völkel, H. Gläsel, E. Hartmann, Phys. Rev. B 62, 2085 (2000)

    Article  ADS  Google Scholar 

  11. T. Takeuchi, K. Ado, T. Asai, H. Kageyama, Y. Saito, C. Masquelier, O. Nakamura, J. Am. Ceram. Soc. 77, 1665 (1994)

    Article  Google Scholar 

  12. S. Aoyagi, Y. Kuroiwa, A. Sawada, I. Yamashita, T. Atake, J. Phys. Soc. Jpn. 71, 1218 (2002)

    Article  ADS  Google Scholar 

  13. Y. Kuroiwa, S. Aoyagi, A. Sawada, H. Ikawa, I. Yamashita, N. Inoue, T. Atake, J. Therm. Anal. Calorim. 69, 933 (2002)

    Article  Google Scholar 

  14. T. Hoshina, S. Wada, Y. Kuroiwa, T. Tsurumi, Appl. Phys. Lett. 93, 192914 (2008)

    Article  ADS  Google Scholar 

  15. D. Szwarcman, D. Vestler, G. Markovich, ACS Nano 5, 507 (2011)

    Article  Google Scholar 

  16. B. Jiang, L.A. Bursill, Phys. Rev. B 60, 9978 (1999)

    Article  ADS  Google Scholar 

  17. R. Asiaie, W. Zhu, S.A. Akbar, P.K. Dutta, Chem. Mater. 8, 226 (1996)

    Article  Google Scholar 

  18. B. Jiang, J.L. Peng, L.A. Bursill, W.L. Zhong, J. Appl. Phys. 87, 3462 (2000)

    Article  ADS  Google Scholar 

  19. W. Ma, Appl. Phys. A 96, 915 (2009)

    Article  ADS  Google Scholar 

  20. W.L. Zhong, Y.G. Wang, P.L. Zhang, B.D. Qu, Phys. Rev. B 50, 698 (1994)

    Article  ADS  Google Scholar 

  21. C. Jia, V. Nagarajan, J. He, L. Houben, T. Zhao, R. Ramesh, K. Urban, R. Waser, Nat. Mater. 6, 67 (2007)

    Article  ADS  Google Scholar 

  22. C. Jia, K. Urban, M. Alexe, D. Hesse, I. Vrejoiu, Science 331, 1420 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The financial support from the National Natural Science Foundation of China (NSFC) and the Program for New Century Excellent Talents in University (NCET) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhui Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, W. Size dependent transition enthalpy in PbTiO3 nanoparticles due to a cubic surface layer. Appl. Phys. A 111, 613–617 (2013). https://doi.org/10.1007/s00339-012-7274-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7274-y

Keywords

Navigation