Skip to main content
Log in

Creation of periodic subwavelength ripples on tungsten surface by ultra-short laser pulses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Formation of periodic subwavelength ripples on a metallic tungsten surface is investigated through a line-scribing method under the irradiation of 800 nm, 50 fs to 8 ps ultra-short laser pulses. The distinctive features of the induced ripple structures are described in detail with different laser parameters. Experimental measurements reveal that with gradual decrease of the laser fluence, the pulse duration or the scanning speed, the ripple period is inclined to reduce but the ripple depth tends to become pronounced. Theoretical analyses suggest that the transient dielectric function change of the tungsten surface mainly originates from the nonequilibrium distribution of electrons due to the d-band transitions. A sandwich-like physical model of air–plasma–target is proposed and the excitation of a surface plasmon polaritonic (SPP) wave is supposed to occur on the interface between the metallic target and the electron plasma layer. Formation of ripples can be eventually attributed to the laser–SPP interference. Theoretical interpretations are consistent with the experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Birnbaum, J. Appl. Phys. 36, 3688 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  2. J.E. Sipe, J.F. Young, J.S. Preston, H.M. Van Driel, Phys. Rev. B 27, 1155 (1983)

    Article  ADS  Google Scholar 

  3. G.S. Zhou, P.M. Fauchet, A.E. Siegman, Phys. Rev. B 26, 5366 (1982)

    Article  ADS  Google Scholar 

  4. A. Vorobyev, V. Makin, C. Guo, Phys. Rev. Lett. 102, 234301 (2009)

    Article  ADS  Google Scholar 

  5. P.M. Fauchet, A.E. Siegman, Appl. Phys. Lett. 40, 824 (1982)

    Article  ADS  Google Scholar 

  6. A.J. Huis in’t Veld, J. van de Veer, in Proc. Laser Precision Microfabrication (LPM), Japan (2009)

    Google Scholar 

  7. Y. Yang, J.J. Yang, C.Y. Liang, H.S. Wang, X.N. Zhu, D.F. Kuang, Y. Yang, Appl. Phys. A 92, 635 (2008)

    Article  ADS  Google Scholar 

  8. Q.Z. Zhao, S. Malzer, L.J. Wang, Opt. Lett. 32, 1932 (2007)

    Article  ADS  Google Scholar 

  9. A.Y. Vorobyev, C.L. Guo, J. Appl. Phys. 104, 063523 (2008)

    Article  ADS  Google Scholar 

  10. F. Garrelie, J.P. Colombier, F. Pigeon, S. Tonchev, N. Faure, M. Bounhalli, S. Reynaud, O. Parriaux, Opt. Express 19, 9035 (2011)

    Article  ADS  Google Scholar 

  11. B. Dusser, Z. Sagan, H. Soder, N. Faure, J.P. Colombier, M. Jourlin, E. Audouard, Opt. Express 18, 2913 (2010)

    Article  ADS  Google Scholar 

  12. J.P. Colombier, F. Garrelie, N. Faure, S. Reynaud, M. Bounhalli, E. Audouard, R. Stoian, F. Pigeon, J. Appl. Phys. 111, 024902 (2012)

    Article  ADS  Google Scholar 

  13. K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, S. Sakabe, Phys. Rev. B 82, 165417 (2010)

    Article  ADS  Google Scholar 

  14. A. Borowiec, H.K. Haugen, Appl. Phys. Lett. 82, 4462 (2003)

    Article  ADS  Google Scholar 

  15. J. Bonse, M. Munz, H. Sturm, J. Appl. Phys. 97, 013538 (2005)

    Article  ADS  Google Scholar 

  16. J. Reif, F. Costache, M. Henyk, S.V. Pandelov, Appl. Surf. Sci. 197, 891 (2002)

    Article  ADS  Google Scholar 

  17. G. Miyaji, K. Miyazaki, Opt. Express 16, 16265 (2008)

    Article  ADS  Google Scholar 

  18. G. Miyaji, K. Miyazaki, Appl. Phys. Lett. 91(12), 123102 (2007)

    Article  ADS  Google Scholar 

  19. Q. Wu, Y. Ma, R. Fang, Y. Liao, Q. Yu, X. Chen, K. Wang, Appl. Phys. Lett. 82, 1703 (2003)

    Article  ADS  Google Scholar 

  20. M. Huang, F.L. Zhao, Y. Cheng, N.S. Xu, Z.Z. Xu, Phys. Rev. B 79, 125436 (2009)

    Article  ADS  Google Scholar 

  21. T.Q. Jia, H.X. Chen, M. Huang, F.L. Zhao, J.R. Qiu, R.X. Li, Z.Z. Xu, X.K. He, J. Zhang, H. Kuroda, Phys. Rev. B 72, 125429 (2005)

    Article  ADS  Google Scholar 

  22. R.L. Harzic, H. Schuck, D. Sauer, T. Anhut, I. Riemann, K. König, Opt. Express 13, 6651 (2005)

    Article  ADS  Google Scholar 

  23. J. Bonse, J. Krüger, J. Appl. Phys. 108, 034903 (2010)

    Article  ADS  Google Scholar 

  24. T. Tomita, K. Kinoshita, S. Matsuo, S. Hashimoto, Appl. Phys. Lett. 90, 153115 (2007)

    Article  ADS  Google Scholar 

  25. Y. Yang, J.J. Yang, L. Xue, Y. Guo, Appl. Phys. Lett. 97, 141101 (2010)

    Article  ADS  Google Scholar 

  26. O. Varlamova, F. Costache, J. Reif, M. Bestehorn, Appl. Surf. Sci. 252, 4702 (2006)

    Article  ADS  Google Scholar 

  27. C. Wang, H. Huo, M. Johnson, M. Shen, E. Mazur, Nanotechnology 21, 075304 (2010)

    Article  ADS  Google Scholar 

  28. J.G. Fujimoto, J.M. Liu, E.P. Ippen, N. Bloembergen, Phys. Rev. Lett. 53, 1837 (1984)

    Article  ADS  Google Scholar 

  29. G.D. Tsibidis, E. Stratakis, K.E. Aifantis, J. Appl. Phys. 111, 053502 (2012)

    Article  ADS  Google Scholar 

  30. D.W. Lynch, W.R. Hunter, in Handbook of Optical Constants of Solids I, ed. by E.D. Palik (Academic, New York, 1985)

    Google Scholar 

  31. J.H. Weaver, C.G. Olson, D.W. Lynch, Phys. Rev. B 12, 1293 (1975)

    Article  ADS  Google Scholar 

  32. B. Rethfeld, A. Kaiser, M. Vicanek, G. Simon, Phys. Rev. B 65, 214303 (2002)

    Article  ADS  Google Scholar 

  33. Z. Lin, L.V. Zhigilei, V. Celli, Phys. Rev. B 77, 075133 (2008)

    Article  ADS  Google Scholar 

  34. E. Colavita, A. Franciosi, C. Mariani, R. Rosei, Phys. Rev. B 27, 4684 (1983)

    Article  ADS  Google Scholar 

  35. Z. Chen, S. Mao, Appl. Phys. Lett. 93, 051506 (2008)

    Article  ADS  Google Scholar 

  36. W. Hu, Y.C. Shin, G. King, Phys. Plasmas 18, 093302 (2011)

    Article  ADS  Google Scholar 

  37. A.M. Bonch-Bruevich, M.N. Libenson, V.S. Makin, V.V. Trubaev, Opt. Eng. 31, 718 (1992)

    Article  ADS  Google Scholar 

  38. I. Pockrand, H. Raether, Appl. Opt. 16, 1784 (1977)

    Article  ADS  Google Scholar 

  39. J.J. Yang, W.W. Liu, X.N. Zhu, Chin. Phys. 16, 2003 (2007)

    Article  ADS  Google Scholar 

  40. J.J. Yang, Y.B. Zhao, N. Zhang, Y.M. Liang, M.W. Wang, Phys. Rev. B 76, 165430 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank C. Liang and H. Wang for assisting in SEM inspections. The financial supports from NSFC (Grant Nos. 10874092 and 11274184), the Program for New Century Excellent Talents in University (Grants No. 08-0291) and Tianjin Natural Science Foundation (Grant Nos. 10JCZDGX35100, 12JCZDJC20200) are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xue, L., Yang, J., Yang, Y. et al. Creation of periodic subwavelength ripples on tungsten surface by ultra-short laser pulses. Appl. Phys. A 109, 357–365 (2012). https://doi.org/10.1007/s00339-012-7261-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7261-3

Keywords

Navigation