Skip to main content
Log in

Multi-functional metamaterial sensor based on a broad-side coupled SRR topology with a multi-layer substrate

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper intends to demonstrate the feasibility of a miniaturized multi-purpose metamaterial sensor that can be effectively used for chemical, biological and pressure sensing in microwave and terahertz applications. This novel sensor design makes use of the double-sided split ring resonator (DSRR) topology that is modified to have an additional sensing medium sandwiched between two identical broadside coupled SRR unit cells. The resonance frequency of the resulting DSRR sensor shifts as the dielectric permittivity or thickness of this interlayer medium changes in response to variations in an environmental parameter such as temperature, humidity, density, concentration or pressure. As a proof of concept study, both numerical and experimental results are presented with very good agreement for a multi-functional miniaturized metamaterial sensor prototype operating in X-band. Simulations for three different real-life scenarios are also presented for this sensor topology to demonstrate a moisture sensor, a density sensor and a temperature sensor with very good sensitivities where the interlayer medium is occupied by sawdust, silica aerogel and seawater, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V.G. Veselago, Sov. Phys. Usp. 10(4), 509 (1968)

    Article  ADS  Google Scholar 

  2. R.A. Shelby, D.R. Smith, S. Schultz, Science 292(5514), 77 (2001)

    Article  ADS  Google Scholar 

  3. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart, IEEE Trans. Microw. Theory Tech. 47(11), 2075 (1999)

    Article  ADS  Google Scholar 

  4. J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Steward, J. Phys. Condens. Matter 10, 4785 (1998)

    Article  ADS  Google Scholar 

  5. J.D. Baena, R. Marqués, F. Medina, J. Martel, Phys. Rev. B 69, 014402 (2004)

    Article  ADS  Google Scholar 

  6. K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C.M. Soukoulis, E. Ozbay, New J. Phys. 7, 168 (2005)

    Article  ADS  Google Scholar 

  7. E. Ekmekci, G. Turhan-Sayan, Prog. Electromagn. Res. 12, 35 (2009)

    Article  Google Scholar 

  8. E. Ekmekci, R.D. Averitt, G. Turhan-Sayan, in Proceedings of Progress in Electromagnetics Research Symposium in Cambridge (The Electromagnetics Academy, Cambridge, 2010), pp. 538–540

    Google Scholar 

  9. E. Ekmekci, A.C. Strikwerda, K. Fan, G. Keiser, X. Zhang, G. Turhan-Sayan, R.D. Averitt, Phys. Rev. B 83, 193103 (2011)

    Article  ADS  Google Scholar 

  10. A. Ishimaru, S. Jaruwatanadilok, Y. Kuga, Prog. Electromagn. Res. 51, 139 (2005)

    Article  Google Scholar 

  11. A. Arbabi, A. Rohani, D. Saeedkia, S. Safavi-Naeini, in Proceedings of 33rd International Conference on Infrared, Millimeter and Terahertz Waves (International Society of Infrared, Millimeter and Terahertz Waves, Pasadena, 2008), pp. 1–2

    Google Scholar 

  12. H. Tao, A.C. Strikwerda, M. Liu, J.P. Mondia, E. Ekmekci, K. Fan, D.L. Kaplan, W.J. Padilla, X. Zhang, R.D. Averitt, F.G. Omenetto, Appl. Phys. Lett. 97, 261909 (2010)

    Article  ADS  Google Scholar 

  13. X. Xu, B. Peng, D. Li, J. Zhang, L.M. Wong, Q. Zhang, S. Wang, Q. Xiong, Nano Lett. 11, 3232 (2011)

    Article  Google Scholar 

  14. X.-J. He, L. Qui, Y. Wang, Z.-X. Geng, J.-M. Wang, T.-L. Gui, J. Infrared Millim. Terahertz Waves 32, 902 (2011)

    Article  Google Scholar 

  15. T. Driscoll, G.O. Andreev, D.N. Basov, S. Palit, S.Y. Cho, N.M. Jokerst, D.R. Smith, Appl. Phys. Lett. 91, 062511 (2007)

    Article  ADS  Google Scholar 

  16. R. Melik, E. Unal, N.K. Perkgoz, C. Puttlitz, H.V. Demir, Appl. Phys. Lett. 95, 011106 (2009)

    Article  ADS  Google Scholar 

  17. R. Melik, E. Unal, N.K. Perkgoz, C. Puttlitz, H.V. Demir, Appl. Phys. Lett. 95, 181105 (2009)

    Article  ADS  Google Scholar 

  18. R. Melik, E. Unal, N. Perkgoz, B. Santoni, D. Kamstock, C. Puttlitz, H. Demir, IEEE J. Sel. Top. Quantum Electron. 16(2), 450 (2010)

    Article  Google Scholar 

  19. R. Melik, E. Unal, N.K. Perkgoz, C. Puttlitz, H.V. Demir, Opt. Express 18, 5000 (2010)

    Article  ADS  Google Scholar 

  20. Y.-T. Chang, Y.-C. Lai, C.-T. Li, C.-K. Chen, T.-J. Yen, Opt. Express 18, 9561 (2010)

    Article  ADS  Google Scholar 

  21. Z. Jakšić, S. Vuković, J. Matovic, D. Tanasković, Materials 4, 1 (2011)

    ADS  Google Scholar 

  22. C. Jeppesen, S. Xiao, N.A. Mortensen, A. Kristensen, Opt. Express 18, 25075 (2010)

    Article  ADS  Google Scholar 

  23. A.I. Al-Hanib, C. Jansen, M. Koch, Appl. Phys. Lett. 93, 083507 (2008)

    Article  ADS  Google Scholar 

  24. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A.J. Taylor, W. Zhang, Opt. Express 16, 1786 (2008)

    Article  ADS  Google Scholar 

  25. X.-J. He, Y. Wang, J.-M. Wang, T.-L. Gui, Microsyst. Technol. 16, 1735 (2010)

    Article  Google Scholar 

  26. B. Arritt, B. Adomanis, T. Khraishi, D. Smith, Appl. Phys. Lett. 97, 191907 (2010)

    Article  ADS  Google Scholar 

  27. M. Pryce, K. Aydin, Y.A. Kelaita, R.M. Briggs, H.A. Atwater, Philos. Trans. R. Soc. Lond. A 369, 3447 (2011)

    Article  ADS  Google Scholar 

  28. Z. Jakšić, O. Jakšić, Z. Djurić, C. Kment, J. Opt. A, Pure Appl. Opt. 9, S377 (2007)

    Article  Google Scholar 

  29. H.-J. Lee, J.-H. Lee, H.-I. Jung, Appl. Phys. Lett. 99, 163703 (2011)

    Article  ADS  Google Scholar 

  30. M. Huang, J. Yang, J. Sun, J. Shi, J. Peng, J. Infrared Millim. Terahertz Waves 30(11), 1131 (2009)

    Article  Google Scholar 

  31. N. Papasimakis, Z. Luo, Z.X. Shen, F. De Angelis, E. Di Fabrizio, A.E. Nikolaenko, N.I. Zheludev, Opt. Express 18(8), 8353 (2010)

    Article  ADS  Google Scholar 

  32. F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K.B. Alici, E. Ozbay, IEEE Trans. Microw. Theory Tech. 55(12), 2865 (2007)

    Article  ADS  Google Scholar 

  33. A.M. Paz, The dielectric properties of solid biofuels. Ph.D. thesis, Mälardalen University, Sweden, 2010

  34. L.W. Hrubesh, L.E. Keene, V.R. Latorre, J. Mater. Res. 8(7), 1736 (1993)

    Article  ADS  Google Scholar 

  35. W. Ellison, A. Balana, G. Delbos, K. Lamkaouchi, L. Eymard, C. Guillou, C. Prigent, Radio Sci. 33(3), 639 (1998)

    Article  ADS  Google Scholar 

  36. C. Guillou, W. Ellison, L. Eymard, K. Lamkaouchi, C. Prigent, G. Delbos, G. Balana, S.A. Boukabara, Radio Sci. 33(3), 649 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. A. Hayrettin Yuzer for his contributions during the fabrication process of prototype sensors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evren Ekmekci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ekmekci, E., Turhan-Sayan, G. Multi-functional metamaterial sensor based on a broad-side coupled SRR topology with a multi-layer substrate. Appl. Phys. A 110, 189–197 (2013). https://doi.org/10.1007/s00339-012-7113-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7113-1

Keywords

Navigation