Skip to main content

Advertisement

Log in

Optical reflectance, dielectric functions and phonon-vibrational modes of reactively sputtered Nb-substituted TiN thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The optical reflectance, dielectric functions and phonon vibrational modes of Ti1−x Nb x N (0≤x≤0.77) thin films are reported. Films of 500-nm thickness were deposited on 316LN nuclear grade stainless steel substrates by radio-frequency magnetron sputtering. The reflectance spectra of the films, in the energy range 1.5 to 5.5 eV, are fitted using the Drude–Lorentz model as the response of one Drude parameter and four Lorentz oscillators. It is demonstrated that the properties studied are dependent on Nb concentration, x, and exhibit a behavior transition threshold at x=0.5. The optical properties studied are closer to TiN for x<0.5 and resemble NbN for x>0.5. For example, the films showed a minimum in reflectance at ∼2.33 eV for values of x up to 0.5, corresponding to the Ti–N charge transfer band. Increase in Nb concentration beyond 0.5 caused a large shift in this energy to 3.2 eV, corresponding to the Nb–N charge transfer excitation. Similarly, the real part of the dielectric function is characterized by a screened plasma energy of 2.25 eV for values of x<0.5 (∼TiN) and 3.25±0.2 eV for x>0.5 (∼NbN). The energy at which the loss function reaches a peak value increases linearly for values of x from 0 to 0.41 and decreases very drastically for x>0.5. Phonon-vibrational modes of Ti1−x Nb x N thin films studied by Raman spectroscopy show that Nb substitution in TiN results in first-order Raman scattering. The single-phonon acoustical peak at 270 cm−1 of TiN shifted to 265 cm−1 for x=0.77, while the two-phonon acoustical peak of TiN at 620 cm−1 shifted to 630 cm−1 for the same value of x. The reasons for the existence of a behavior transition threshold in Nb concentration are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. Stampfl, W. Mannstadt, R. Asahi, A.J. Freeman, Phys. Rev. B 63, 155106 (2001)

    Article  ADS  Google Scholar 

  2. R. Hubler, Surf. Coat. Technol. 158–159, 680 (2002)

    Article  Google Scholar 

  3. E.I. Isaev, S.I. Simak, I.A. Abrikosov, R. Ahuja, Y.K. Vekilov, M.I. Katsnelson, A.I. Lichtenstein, B. Johansson, J. Appl. Phys. 101, 123519 (2007)

    Article  ADS  Google Scholar 

  4. S. Niyomsoan, W. Grant, D.L. Olson, B. Mishra, Thin Solid Films 415, 187 (2002)

    Article  ADS  Google Scholar 

  5. G. Abadias, L.E. Koutsokeras, S.N. Dub, G.N. Tolmachova, A. Debelle, T. Sauvage, P. Villechaise, J. Vac. Sci. Technol. A 28, 541 (2010)

    Article  Google Scholar 

  6. A. Hoerling, J. Sjolen, H. Willmann, T. Larsson, M. Oden, L. Hultman, Thin Solid Films 516, 6421 (2008)

    Article  ADS  Google Scholar 

  7. V.V. Uglov, D.P. Rusalski, S.V. Zlotski, A.V. Sevriuk, G. Abadias, S.B. Kislitsin, K.K. Kadyrzhanov, I.D. Gorlachev, S.N. Dub, Surf. Coat. Technol. 204, 2095 (2010)

    Article  Google Scholar 

  8. G.M. Matenoglou, Ch.E. Lekka, L.E. Koutsokeras, G. Karras, C. Kosmidis, G.A. Evangelakis, P. Patsalas, J. Appl. Phys. 105, 103714 (2009)

    Article  ADS  Google Scholar 

  9. O. Bourbia, S. Achour, N. Tabet, M. Parlinska, A. Harabi, Thin Solid Films 515, 6758 (2007)

    Article  ADS  Google Scholar 

  10. C.S. Sandu, R. Sanjines, M. Benkahoul, F. Medjani, F. Levy, Surf. Coat. Technol. 201, 4083 (2006)

    Article  Google Scholar 

  11. P. Patsalas, G. Abadias, G.M. Matenoglou, L.E. Koutsokeras, Ch.E. Lekka, Surf. Coat. Technol. 205, 1324 (2010)

    Article  Google Scholar 

  12. G.M. Matenoglou, L.E. Koutsokeras, Ch.E. Lekka, G. Abadias, C. Kosmidis, G.A. Evangelakis, P. Patsalas, Surf. Coat. Technol. 204, 911 (2009)

    Article  Google Scholar 

  13. W. Kress, P. Roedhammer, H. Bilz, W.D. Teuchert, A.N. Christensen, Phys. Rev. B 17, 111 (1978)

    Article  ADS  Google Scholar 

  14. C.P. Constable, J. Yarwood, W.D. Munz, Surf. Coat. Technol. 116–119, 155 (1999)

    Article  Google Scholar 

  15. P. Hones, R. Sanjines, F. Levy, Thin Solid Films 332, 240 (1998)

    Article  ADS  Google Scholar 

  16. K. Vasu, M.G. Krishna, K.A. Padmanabhan, J. Mater. Sci. 47, 3522 (2012)

    Article  ADS  Google Scholar 

  17. P. Patsalas, S. Logothetidis, J. Appl. Phys. 90, 4725 (2001)

    Article  ADS  Google Scholar 

  18. M. Benhamida, A. Meddour, S. Zerkout, S. Achour, J. Mol. Struct., Theochem 777, 41 (2006)

    Article  Google Scholar 

  19. P.E. Schmid, M.S. Sunaga, F. Levy, J. Vac. Sci. Technol. A 16, 2870 (1998)

    Article  ADS  Google Scholar 

  20. M.S.R.N. Kiran, M.G. Krishna, K.A. Padmanabhan, Appl. Surf. Sci. 255, 1934 (2008)

    Article  ADS  Google Scholar 

  21. R. Sanjinés, M. Benkahoul, C.S. Sandu, P.E. Schmid, F. Lévy, Thin Solid Films 494, 190 (2006)

    Article  ADS  Google Scholar 

  22. K. Tanabe, H. Asano, Y. Katoh, O. Michikami, J. Appl. Phys. 63, 1733 (1988)

    Article  ADS  Google Scholar 

  23. S. Adachi, M. Takahashi, J. Appl. Phys. 87, 1264 (2000)

    Article  ADS  Google Scholar 

  24. R. Sanjinés, M. Benkahoul, C.S. Sandu, P.E. Schmid, F. Lévy, J. Appl. Phys. 98, 123511 (2005)

    Article  ADS  Google Scholar 

  25. A. Delin, O. Eriksson, R. Ahuja, B. Johansson, M.S.S. Brooks, T. Gasche, S. Auluck, J.M. Wills, Phys. Rev. B 54, 1673 (1996)

    Article  ADS  Google Scholar 

  26. J.H. Kang, K.J. Kim, J. Appl. Phys. 86, 346 (1999)

    Article  ADS  Google Scholar 

  27. W. Spengler, R. Kaiser, A.N. Chistensen, G.M. Vogt, Phys. Rev. B 17, 1095 (1978)

    Article  ADS  Google Scholar 

  28. R. Chowdhury, R.D. Vispute, K. Jagannadham, J. Narayan, J. Mater. Res. 11, 1458 (1996)

    Article  ADS  Google Scholar 

  29. M. Stoehr, C.S. Shin, I. Petrov, J.E. Greene, J. Appl. Phys. 110, 083503 (2011)

    Article  ADS  Google Scholar 

  30. C.C. Chen, N.T. Liang, W.S. Tse, I.Y. Chen, J.G. Duh, Chin. J. Phys. 32, 205 (1994)

    Google Scholar 

  31. H.C. Barshilia, K.S. Rajam, J. Mater. Res. 19, 3196 (2004)

    Article  ADS  Google Scholar 

  32. D. Gall, M. Stoehr, J.E. Greene, Phys. Rev. B 64, 174302 (2001)

    Article  ADS  Google Scholar 

  33. R. Sanjines, C. Wiemer, P. Hones, F. Levy, J. Appl. Phys. 83, 1396 (1998)

    Article  ADS  Google Scholar 

  34. V.M. Vishnyakov, V.I. Bachurin, K.F. Minnebaev, R. Valizadeh, D.G. Teer, J.S. Colligon, V.V. Vishnyakov, V.E. Yurasova, Thin Solid Films 497, 189 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support received from the UPE and UGC-CAS programs. K.V. thanks the DST-CFN project and G.M.G. thanks the UGC for financial support in the form of a fellowship. Infrastructural support provided by DST under the Centre for Nanotechnology, University of Hyderabad is acknowledged. The help of Dr. Sachin D. Kshirsagar in the Raman scattering measurements is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ghanashyam Krishna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasu, K., Gopikrishnan, G.M., Ghanashyam Krishna, M. et al. Optical reflectance, dielectric functions and phonon-vibrational modes of reactively sputtered Nb-substituted TiN thin films. Appl. Phys. A 108, 993–1000 (2012). https://doi.org/10.1007/s00339-012-7012-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7012-5

Keywords

Navigation