Skip to main content
Log in

Thermophoresis/diffusion as a plausible mechanism for unipolar resistive switching in metal–oxide–metal memristors

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We show that the SET operation of a unipolar memristor could be explained by thermophoresis, or the Soret effect, which is the diffusion of atoms, ions or vacancies in a steep temperature gradient. This mechanism explains the observed resistance switching via conducting channel formation and dissolution reported for TiO2 and other metal-oxide-based unipolar resistance switches. Depending on the temperature profile in a device, dilute vacancies can preferentially diffuse radially inward toward higher temperatures caused by the Joule heating of an electronic current to essentially condense and form a conducting channel. The RESET operation occurs via radial diffusion of vacancies away from the channel when the temperature is elevated but the gradient is small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. Dearnaley, A.M. Stoneham, D.V. Morgan, Electrical phenomena in amorphous oxide films. Rep. Prog. Phys. 33, 1129–1192 (1970)

    Article  ADS  Google Scholar 

  2. H. Pagnia, N. Sotnik, Bistable switching in electroformed metal–insulator–metal devices. Phys. Status Solidi A 108(11), 11–65 (1988)

    Article  ADS  Google Scholar 

  3. A. Sawa, Resistive switching in transition metal oxides. Mater. Today 11, 28–36 (2008)

    Article  Google Scholar 

  4. K.K. Likharev, CMOL technology: devices, circuits, and architectures. J. Nanoelectron. Optoelectron. 3, 203–230 (2008)

    Article  Google Scholar 

  5. R. Waser, R. Dittman, G. Staikov, K. Szot, Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009)

    Article  Google Scholar 

  6. M.T. Hickmott, Low-frequency negative resistance in thin anodic oxide films. J. Appl. Phys. 33, 2669–2682 (1962)

    Article  ADS  Google Scholar 

  7. D.S. Jeong, H. Schroeder, R. Waser, Coexistence of bipolar and unipolar resistive switching behaviors in a Pt/TiO2/Pt stack. Electrochem. Solid-State Lett. 10, G51–G53 (2007)

    Article  Google Scholar 

  8. L. Goux, J.G. Lisoni, M. Jurczak, D.J. Wouters, L. Courtade, Ch. Muller, Coexistence of the bipolar and unipolar resistive-switching modes in NiO cells made by thermal oxidation of Ni layers. J. Appl. Phys. 107, 024512 (2010)

    Article  ADS  Google Scholar 

  9. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008)

    Article  ADS  Google Scholar 

  10. L.O. Chua, Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18, 507–519 (1971)

    Article  Google Scholar 

  11. D.B. Strukov, J.L. Borghetti, R.S. Williams, Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior. Small 5(9), 1058–1063 (2009)

    Article  Google Scholar 

  12. D.B. Strukov, R.S. Williams, Exponential ionic drift: Fast switching and low volatility of thin film memristors. Appl. Phys. A 94(3), 515–519 (2009)

    Article  ADS  Google Scholar 

  13. Y.-Y. Lin, F.-M. Lee, W.-C. Chien, Y.-C. Chen, K.-Y. Hsieh, C.-Y. Lu, A model for the RESET operation of electrochemical conducting bridge resistive memory (CB-ReRAM), in Proc. Int. Electron Device Meet., San Francisco, CA, January 2010, pp. 22.2.1–22.2.4

    Chapter  Google Scholar 

  14. F. Nardi, D. Ielmini, C. Cagli, S. Spiga, M. Fanciulli, L. Goux, D.J. Wouters, Control of filament size and reduction of reset current below 10 mA in NiO resistance switching memories. Solid-State Electron. 58, 42–47 (2011)

    Article  ADS  Google Scholar 

  15. D. Ielmini, F. Nardi, C. Cagli, Physical models of size-dependent nanofilament formation and rupture in NiO resistive switching memories. Nanotechnology 22, 254022 (2011)

    Article  ADS  Google Scholar 

  16. S.F. Karg, G.I. Meijer, J.G. Bednorz, C.T. Rettner, A.G. Schrott, E.A. Joseph, C.H. Lam, M. Janousch, U. Staub, F. La Mattina, S.F. Alvarado, D. Widmer, R. Stutz, U. Drechsler, D. Caimi, Transition-metal oxide-based resistance change memories. IBM J. Res. Dev. 52(4–5), 481–492 (2008)

    Article  Google Scholar 

  17. U. Russo, D. Ielmini, C. Cagli, A.L. Lacaita, S. Spigat, C. Wiemert, M. Peregot, M. Fanciulli, Conductive-filament switching analysis and self-accelerated thermal dissolution model for reset in NiO-based RRAM, in Proc. Int. Electron Devices Meet., Baltimore, MD, December 2007, pp. 775–778, art. 4419062

    Google Scholar 

  18. J.L. Borghetti, D.M. Strukov, M.D. Pickett, J.J. Yang, R.S. Williams, Electrical transport and thermometry of electroformed titanium dioxide memristive switches. J. Appl. Phys. 106, 124504 (2009)

    Article  ADS  Google Scholar 

  19. S.H. Chang, S.C. Chae, S.B. Lee, C. Liu, T.W. Noh, J.S. Lee, B. Kahng, J.H. Jang, M.Y. Kim, D.-W. Kim, C.U. Jung, Effects of heat dissipation on unipolar resistance switching in Pt/NiO/Pt capacitors. Appl. Phys. Lett. 92, 183507 (2008)

    Article  ADS  Google Scholar 

  20. A. Shkabko, M.H. Aguirre, I. Marozau, T. Lippert, A. Weidenkaff, Measurements of current-voltage-induced heating in the Al/SrTiO3− x N y /Al memristor during electroformation and resistance switching. Appl. Phys. Lett. 95, 152109 (2009)

    Article  ADS  Google Scholar 

  21. J.P. Strachan, D.B. Strukov, J. Borghetti, J.J. Yang, G. Medeiros-Ribeiro, R.S. Williams, The switching location of a bipolar memristor: Chemical, thermal, and structural mapping. Nanotechnology 22, 254015 (2011)

    Article  ADS  Google Scholar 

  22. N.A. Tulina, V.V. Sirotkin, Electron instability in doped-manganites-based heterojunctions. Physica C, Supercond. 400(3–4), 105–110 (2004)

    Article  ADS  Google Scholar 

  23. D.B. Strukov, R.S. Williams, Intrinsic constrains on thermally-assisted memristive switching. Appl. Phys. A 102, 851–855 (2011)

    Article  ADS  Google Scholar 

  24. H. Schroeder, V. Zhirnov, R.K. Cavin, R. Waser, Voltage-time dilemma of pure electronic mechanisms in resistive switching memory cells. J. Appl. Phys. 107(5), 054517 (2010)

    Article  ADS  Google Scholar 

  25. V.V. Zhirnov, R.K. Cavin, S. Menzel, E. Linn, S. Schmelzer, D. Brauhaus, C. Schindler, R. Waser, Memory devices: energy-space-time tradeoffs. Proc. IEEE 98(12), 2185–2200 (2010)

    Article  Google Scholar 

  26. M. Noman, W. Jiang, P.A. Salvador, M. Skowronski, J.A. Bain, Computational investigations into the operating window for memristive devices based on homogeneous ionic motion. Appl. Phys. A 102(4), 877–883 (2011)

    Article  ADS  Google Scholar 

  27. S.C. Chae, J.S. Lee, S. Kim, S.B. Lee, S.H. Chang, C. Liu, B. Kahng, H. Shin, D.-W. Kim, C.U. Jung, S. Seo, M.-J. Lee, T.W. Noh, Random circuit breaker network model for unipolar switching. Adv. Mater. 20, 1154–1159 (2008)

    Article  Google Scholar 

  28. G. Bersuker, D.C. Gilmer, D. Veksler, J. Yum, H. Park, S. Lian, L. Vandelli, A. Padovanu, L. Larcher, K. McKenna, A. Shluger, V. Iglesias, M. Porti, W. Taylor, P.D. Kirsch, R. Jammy, Metal oxide RRAM switching mechanism based on conductive filament microscopic properties, in Proc. Int. Electron Device Meet., San Francisco, CA, January 2010, pp. 19.6.1–19.6.4

    Chapter  Google Scholar 

  29. S. Larentis, C. Cagli, F. Nardi, D. Ielmini, Filament diffusion model for simulating reset and retention processes in RRAM. Microelectron. Eng. 88(7), 1119–1123 (2011)

    Article  Google Scholar 

  30. S.B. Lee, J.S. Lee, S.H. Chang, H.K. Yoo, B.S. Kang, B. Kahng, M.-J. Lee, C.J. Kim, T.W. Noh, Interface-modified random circuit breaker network model applicable to both bipolar and unipolar resistance switching. Appl. Phys. Lett. 98, 033502 (2011)

    Article  ADS  Google Scholar 

  31. K.M. Kim, D.S. Jeong, C.S. Hwang, Nanofilamentary resistive switching in binary oxide systems; a review on the present status and outlook. Nanotechnology 22, 254002 (2011)

    Article  ADS  Google Scholar 

  32. R. Münstermann, J.J. Yang, J.P. Strachan, G. Medeiros-Reibeiro, R. Dittman, R. Waser, Morphological and electrical changes in TiO2 memristive devices induced by electroforming and switching. Phys. Status Solidi, Rapid Res. Lett. 4, 16–18 (2010)

    Article  ADS  Google Scholar 

  33. I. Goldhirsch, D. Ronis, Theory of thermophoresis. I. General considerations and mode-coupling analysis. Phys. Rev. A 27, 1616–1634 (1983)

    Article  ADS  Google Scholar 

  34. F. Ewart, K. Lassmann, H. Matzke, L. Manes, A. Saunders, Oxygen potential measurements in irradiated mixed oxide fuel. J. Nucl. Mater. 124, 44–55 (1984)

    Article  ADS  Google Scholar 

  35. J. Janek, H. Timm, Thermal diffusion and Soret effect in (U, Me) O2+δ: the heat of transport of oxygen. J. Nucl. Mater. 255, 116–127 (1998)

    Article  ADS  Google Scholar 

  36. L.J.T.M. Kempers, A comprehensive thermodynamic theory of the Soret effect in a multicomponent gas, liquid, or solid. J. Chem. Phys. 115, 6330–6341 (2001)

    Article  ADS  Google Scholar 

  37. L.O. Chua, S.M. Kang, Memristive devices and systems. Proc. IEEE 64, 209–223 (1976)

    Article  MathSciNet  Google Scholar 

  38. L.O. Chua, Resistance switching memories are memristors. Appl. Phys. A 102, 765–783 (2011)

    Article  ADS  Google Scholar 

  39. R.D. Astumian, Coupled transport at the nanoscale: the unreasonable effectiveness of equilibrium theory. Proc. Natl. Acad. Sci. USA 104, 3–4 (2007)

    Article  ADS  Google Scholar 

  40. H. Timm, J. Janek, On the Soret effect in binary nonstochiometric oxides—kinetic demixing of cuprite in a temperature gradient. Solid State Ion. 176, 1131–1143 (2005)

    Article  Google Scholar 

  41. A.S. Alexandrov, A.M. Bratkovsky, B. Bridle, S.E. Savel’ev, D.B. Strukov, R.S. Williams, Current-controlled negative differential resistance due to Joule heating in TiO2. Appl. Phys. Lett. 99, 202104 (2011)

    Article  ADS  Google Scholar 

  42. T. Kaplan, D. Adler, Electrothermal switching in amorphous semiconductors. J. Non-Cryst. Solids 8–10, 538–543 (1972)

    Article  Google Scholar 

  43. S. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley-Interscience, New York, 1981)

    Google Scholar 

  44. D. Ielmini, Threshold switching mechanism by high-field energy gain in the hopping transport of chalcogenide glasses. Phys. Rev. B 78, 035308 (2008)

    Article  ADS  Google Scholar 

  45. D.-H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, C.S. Hwang, Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5, 148–153 (2010)

    Article  ADS  Google Scholar 

  46. H. Iddir, S. Ogut, P. Zapol, N.D. Browning, Energetics and diffusion of intrinsic surface and subsurface defects on anatase TiO2 (101). Phys. Rev. B 75, 073203 (2007)

    Article  ADS  Google Scholar 

  47. M.D. Pickett, D.B. Strukov, J. Borghetti, J.J. Yang, G.S. Snider, D.R. Stewart, R.S. Williams, Switching dynamics in a titanium dioxide memristive device. J. Appl. Phys. 106, 074508 (2009)

    Article  ADS  Google Scholar 

  48. J.J. Yang, F. Miao, M.D. Pickett, D.A.A. Ohlberg, D.R. Stewart, C.N. Lau, R.S. Williams, The mechanism of electroforming of metal oxide memristive switches. Nanotechnology 20, 215201 (2009)

    Article  ADS  Google Scholar 

  49. N.F. Mott, R.W. Gurney, Electronic Processes in Ionic Crystals (Oxford University Press, New York, 1940)

    MATH  Google Scholar 

  50. E. Cho, S. Han, H.-S. Ahn, K.-R. Lee, S.K. Kim, C.S. Hwang, First-principles study of point defects in rutile TiO2−x . Phys. Rev. B 73, 193202 (2006)

    Article  ADS  Google Scholar 

  51. D.C. Cronemeyer, Infrared absorption of reduced rutile TiO2 single crystals. Phys. Rev. 113(5), 1123–1226 (1959)

    Article  Google Scholar 

  52. F.M. Hossain, G.E. Murch, L. Sheppard, J. Nowotny, Ab initio electronic structure calculation of oxygen vacancies in rutile titanium dioxide. Solid State Ion. 178, 319–325 (2007)

    Article  Google Scholar 

  53. M.M. Islam, T. Bredow, A. Gerson, Electronic properties of oxygen-deficient and aluminum-doped rutile TiO2 from first principles. Phys. Rev. B 76, 045217 (2007)

    Article  ADS  Google Scholar 

  54. G. Mattioli, F. Filippone, P. Alippi, A.A. Bonapasta, Ab initio study of the electronic states induced by oxygen vacancies in rutil and anatase TiO2. Phys. Rev. B 78, 241201 (2008)

    Article  ADS  Google Scholar 

  55. H. Kamisaka, T. Hitosugi, T. Suenaga, T. Hasegawa, K. Yamashita, Denisty functional theory based first-principle calculation of Nb-doped anatase TiO2 and its interactions with oxygen vacancies and interstital oxygen. J. Chem. Phys. 131, 034702 (2009)

    Article  ADS  Google Scholar 

  56. S. Park, H.-S. Ahn, C.-K. Lee, H. Kim, H. Jin, H.-S. Lee, S. Seo, J. Yu, S. Han, Interaction and ordering of vacancy defects in NiO. Phys. Rev. B 77, 134103 (2008)

    Article  ADS  Google Scholar 

  57. X. Guo, C. Schindler, S. Menzel, R. Waser, Understanding the switching-off mechanism in Ag+migration based resistively switching model systems. Appl. Phys. Lett. 91, 133513 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work at UCSB was supported via NSF grant CCF-1028336.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri B. Strukov.

Appendices

Appendix A1: Derivation of Eqs. (1)–(3)

In the spirit of the microscopic hopping model [12, 26, 40, 49], we consider a one-dimensional billiard ball model with thermal, concentration and potential gradients and derive Eqs. (1)–(3) here to place them all on an equal footing. The ion fluxes in the positive (J +) and negative (J ) directions crossing an imaginary plane in the potential profile at position x (Fig. 6) are given by the following:

(7a)
(7b)
(7c)
(8a)
(8b)
(9a)
(9b)

Here J is the total current, while N R, N L, T R, T L are the concentrations and temperatures on the right and on the left of the imaginary plane, respectively. Other notation is similar to that introduced in Sect. 2 of the paper. In this derivation, we use the ad hoc formula for the excluded volume effect (last term in Eqs. (7a) and (7b)), similar to Ref. [26].

Fig. 6
figure 6

Notation used for deriving Eqs. (1)–(3) for simplified billiard ball model

Next, we simplify Eq. (7c) by deriving the first-order approximation (i.e. neglecting higher order terms) of Eqs. (7a)–(7c) and show that the current in this case can be decomposed into three independent terms—Soret, Fick and drift components (Eqs. (1)–(3) of the paper). In particular, combining Eqs. (7a, 7b, 7c)–(9a, 9b) together we obtain the following:

(10)

where the approximation is due to the omission of the high-order terms and

(11a)
(11b)

To further simplify Eq. (10), we define the (exp[+]±exp[−]) terms, i.e.

(12)

where for convenience we denote

(13a)
(13b)
(13c)

Noting that β≪1 is always true for any practical range of thermal gradients and temperatures, we use Taylor’s expansion about β=0 so that

(14a)
(14b)

Therefore, substituting Eqs. (14a) ands (14b) into Eq. (12), we obtain

(15a)
(15b)

where the approximation sign is due to the omission of the higher order terms in β 2. Substituting Eqs. (15a) and (15b) into Eq. (4), we obtain

(16)

where

$$ D=\frac{1}{2}a^2f\exp \bigl[-U^{\prime}\bigr]$$
(17)

is a typical equation for thermally activated diffusion.

Equation (16) is the general form of the ionic current in the presence of thermal, concentration and potential gradients. For small electric fields, W≪1 so that sinhWW and coshW≈1, and for sufficiently low concentrations NN MAX. In this case, Eq. (16) simplifies to

(18)

which corresponds to classical drift, Fick diffusion and thermophoresis, i.e. Eqs. (1)–() where

(19a)
(19b)

are ion mobility and Soret coefficient, respectively. Note that the approximation in Eq. (18) is due to the fact that W 2 β and (1+U′) are higher order terms and much smaller than the other terms. For example, W 2 βUβ because of the small electric field assumption, so this term is much smaller than the thermophoresis current. Likewise, it is easy to show that \((1+U')W \beta\approx\frac {U}{kT}\frac{Eqa}{2kT}\frac{a}{2T}\frac{\mathrm{d}T}{\mathrm{d}x}\ll1\).

Appendix A2: On the assumption of the neutrality of mobile defects

In our analysis for Fig. 2a, we assumed that mobile defects, i.e. oxygen vacancies, might be neutral so that we could neglect the drift of the charged defects in the electric field. The validity of this assumption largely depends on the position of energy levels of mobile defects inside the band gap. In titanium dioxide, some density functional theory calculations predicted very shallow (or even in the conduction band) electronic states induced by oxygen vacancies [50], while early experimental work [51] and other theoretical investigations predicted rather deep states, i.e. with up to 1.1 eV for neutral vacancies, and high sensitivity on the morphology, nonstoichiometry and the presence of other dopants [5255]. Similarly, relatively deep electronic states of ∼0.3 eV associated with oxygen vacancy defects are predicted for bulk NiO [56]. In the case of such deep energy levels, the neutrality assumption should be valid even for high temperatures. For example, Fig. 7 shows the fraction of ionized dopants as a function of the energy difference between the defects and the bottom of the conduction band for several values of temperature. Here we used simple Poisson–Boltzmann statistics to estimate the probability of the electron detachment to the conduction band, i.e.

$$ \mbox{Fraction of ionized dopants} \approx \exp \bigl[-(E_{\mathrm{C}} - E_{\mathrm{D}})/ k_{\mathrm{B}}T\bigr],$$
(20)

which is a good approximation for n-type materials with a large band gap.

Fig. 7
figure 7

Approximate fraction of ionized donors as a function of their energy levels for several temperatures

Even if the neutrality assumption does not hold, the thermophoresis effect could still play the dominant role in defect transport given that the radial component of the electric field is much smaller than the axial component [57]. The switching dynamics, however, in that case will be most likely defined by the axial drift [31], similar to bipolar memristive devices—see Fig. 2b and its discussion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strukov, D.B., Alibart, F. & Stanley Williams, R. Thermophoresis/diffusion as a plausible mechanism for unipolar resistive switching in metal–oxide–metal memristors. Appl. Phys. A 107, 509–518 (2012). https://doi.org/10.1007/s00339-012-6902-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6902-x

Keywords

Navigation