Skip to main content
Log in

On oxidative degradation of parchment and its non-destructive characterisation and dating

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Historic parchment is an extremely complex material, not only due to the various methods of production used and various past environmental histories of objects, but also due to its inhomogeneous structure. Many traditional methods of characterisation are empirical, but useful since they have gained recognition by the end-users. In this paper, we investigated the shrinkage temperature of collagen and the influence of lipids contained in parchment on the measurements. While the content of lipids does not seem to significantly affect shrinkage temperature measurements themselves, it strongly affects the decrease of shrinkage temperature of collagen during degradation, and thus its thermomechanical properties. This confirms the high importance of lipid peroxidation during degradation of parchment.

While shrinkage temperature determination is a micro-destructive method, we also demonstrated that it is possible to determine this property using near infrared (NIR) spectroscopy based on partial least squares calibration. The root-mean square error of validation (RMSEV), obtained on a set of variously delipidised and degraded samples, was 7°C, so the method could be used for condition assessment or classification of historic objects. Using a set of 185 historic objects dating from 1200–1800, we also developed a method for non-destructive dating of parchment based on NIR spectroscopy using partial least squares regression (RMSEV=72 years), and successfully determined the correct age of a historic charter from the collection of Nationaal Archief, The Netherlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Budrugeac, L. Miu, V. Bocu, F.J. Wortman, C. Popescu, J. Therm. Anal. Calorim. 72, 1057 (2003)

    Article  Google Scholar 

  2. P. Budrugeac, L. Miu, C. Popescu, F.J. Wortman, J. Therm. Anal. Calorim. 77, 975 (2004)

    Article  Google Scholar 

  3. C. Popescu, P. Budrugeac, F.J. Wortmann, L. Miu, D.E. Demco, M. Baias, Polym. Degrad. Stab. 93, 976 (2008)

    Article  Google Scholar 

  4. C. Ghioni, J.C. Hiller, C.J. Kennedy, A.E. Aliev, M. Odlyha, M. Boulton, T.J. Wess, J. Lipid Res. 46, 2726 (2005)

    Article  Google Scholar 

  5. A.J. Bailey, R.G. Paul, J. Soc. Leather Technol. Chem. 82, 104 (1998)

    Google Scholar 

  6. C. Chahine, Thermochim. Acta 365, 101 (2000)

    Article  Google Scholar 

  7. M. Strlič, I.K. Cigić, I. Rabin, J. Kolar, B. Pihlar, M. Cassar, Polym. Degrad. Stab. 94(6), 886 (2009)

    Article  Google Scholar 

  8. M. Odlyha, C. Theodorakopoulos, J. de Groot, L. Bozec, M. Horton, Thermoanalytical (macro to nanoscale) techniques and non-invasive spectroscopic analysis for damage assessment of parchment, in Improved Damage Assessment of Parchment, IDAP EC Research report No. 18 (ISBN 978-92-70-05378-8)

  9. S.N. Cohen, M. Odlyha, G.M. Foster, Thermochim. Acta 365, 111 (2000)

    Article  Google Scholar 

  10. R. Larsen, M. Vest, K.J. Nielsen, J. Soc. Leather Technol. Chem. 77, 151 (1993)

    Google Scholar 

  11. L. Puchinger, S. Pentzien, R. Koter, W. Kautek, Springer Proc. Phys. 100, 51 (2004)

    Article  Google Scholar 

  12. R. Larsen, Summery, Discussion and Conclusion. STEP Leather project. Protection and Conservation of European Cultural Heritage. Report No. 1. (1994), p. 151

  13. R. Larsen, Summery, Discussion and Conclusion. STEP Leather project. Protection and Conservation of European Cultural Heritage. Report No. 4. (1994), p. 145

  14. M. Odlyha, C. Theodorakopoulos, J. de Groot, L. Bozec, M. Horton, e-Preserv. Sci. 6, 138 (2009)

    Google Scholar 

  15. P. Budrugeac, E. Badea, G. Della Gatta, L. Miu, A. Comănescu, Thermochim. Acta 500, 51 (2010)

    Article  Google Scholar 

  16. R. Larsen, Microanalysis of Parchment. Archetype Publications, London (2002)

    Google Scholar 

  17. R. Inagi, T. Miyata, Blood Purif. 17, 95 (1999)

    Article  Google Scholar 

  18. T. Miyata, R. Inagi, K. Asahi, Y. Yamada, K. Horie, H. Sakai, K. Uchida, K. Kurokawa, FEBS Lett. 437, 24 (1998)

    Article  Google Scholar 

  19. B. Dolgin, V. Bulatov, I. Schechter, Rev. Anal. Chem. 151, 28 (2009)

    Google Scholar 

  20. G.W. Small, Trends Anal. Chem. 25, 11 (2006)

    Article  MathSciNet  Google Scholar 

  21. T. Trafela, M. Strlič, J. Kolar, D.A. Lichtblau, M. Anders, D. Pucko Mencigar, B. Pihlar, Anal. Chem. 79, 6319 (2007)

    Article  Google Scholar 

  22. H.W. Siesler, Y. Ozaki, S. Kawata, H.M. Heise, Near-Infrared Spectroscopy. Principles, Instruments, Applications (Wiley/VCH, Weinheim, 2002)

    Google Scholar 

  23. S.C.C. Wiedemann, W.G. Hansen, M. Snieder, V.A.L. Wortel, Analusis Magazine 26, 4 (1998)

    Google Scholar 

  24. P. Chaminade, A. Baillet, D. Ferrier, Analusis Magazine 26, 4 (1998)

    Google Scholar 

  25. R. Karmer, Chemometric Techniques for Quantitative Analysis (Dekker, New York, 1998)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matija Strlič.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Možir, A., Strlič, M., Trafela, T. et al. On oxidative degradation of parchment and its non-destructive characterisation and dating. Appl. Phys. A 104, 211–217 (2011). https://doi.org/10.1007/s00339-010-6108-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-010-6108-z

Keywords

Navigation