Skip to main content
Log in

Transformation of germanium to fluogermanates

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The surface of a single-crystal germanium wafer was transformed to crystals of germanium fluorides and oxides upon exposure to a vapor of HF and HNO3 chemical mixture. Structure analysis indicates that the transformation results in a germanate polycrystalline layer consisting of germanium oxide and ammonium fluogermanate with preferential crystal growth orientation in 〈101〉 direction. Local vibrational mode analysis confirms the presence of N–H and Ge–F vibrational modes in addition to Ge–O stretching modes. Energy dispersive studies reveal the presence of hexagonal α-phase GeO2 crystal clusters and ammonium fluogermanates around these clusters in addition to a surface oxide layer. Electronic band structure as probed by ellipsometry has been associated with the germanium oxide crystals and disorder-induced band tailing effects at the interface of the germanate layer and the bulk Ge wafer. The acid vapor exposure causes Ge surface to emit yellow photoluminescence at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kalem, O. Yavuz, Opt. Express 6, 7 (2000)

    Article  ADS  Google Scholar 

  2. S. Kalem, Eur. Semicond. 26, 31 (2004)

    Google Scholar 

  3. S. Aouida, M. Saadoun, K.B. Saad, B. Bessais, Phys. Status Solidi (c) 2, 3409 (2005)

    Article  ADS  Google Scholar 

  4. I. Kabacelik, B. Ulug, Appl. Surf. Sci. 254, 1870 (2008)

    Article  ADS  Google Scholar 

  5. S. Kalem, Superlattices Microstruct. 44, 705 (2008)

    Article  ADS  Google Scholar 

  6. D.R. Turner, J. Electrochem. Soc. 107, 810 (1960)

    Article  Google Scholar 

  7. H. Robbins, B. Schwartz, J. Electrochem. Soc. 107, 108 (1960)

    Article  Google Scholar 

  8. B. Schwartz, H. Robbins, J. Electrochem. Soc. 108, 365 (1960)

    Article  Google Scholar 

  9. M. Steinert, J. Acker, M. Krause, S. Oswald, K. Wetzig, J. Phys. Chem. B 110, 11377 (2006)

    Article  Google Scholar 

  10. R.B. Heimann, M.B. Ives, N.S. Mcintyre, Thin Solid Films 112, 329 (1984)

    Article  ADS  Google Scholar 

  11. R. Lide, in Handbook of Chemistry and Physics, 71st edn. (1990–1991), pp. 6–55

  12. J.L. Hoard, W.B. Vincent, J. Am. Chem. Soc. 61, 2849 (1939)

    Article  Google Scholar 

  13. International Center for diffraction data, ICDD 2008 (00-007-0240)

  14. P. Hidalgo, B. Mendez, J. Piqueras, Nanotechnology 19, 455705 (2008)

    Article  ADS  Google Scholar 

  15. P. Liu, C.X. Wang, X.Y. Chen, G.W. Yang, J. Phys. Chem. C 112, 13450 (2008)

    Article  Google Scholar 

  16. V.V. Atuchin, T.A. Gavrilova, S.A. Gromilov, V.G. Kostrovsky, L.D. Pokrovsky, I.B. Troitskaia, R.S. Vemuri, G. Carbajal-Franco, C.V. Ramana, Cryst. Growth Des. 9, 1829 (2009)

    Article  Google Scholar 

  17. S. Kalem, I. Romandic, A. Theuwis, Mater. Sci. Semicond. Process. 9, 753 (2006)

    Article  Google Scholar 

  18. O. Knop, W. Westerhaus, M. Falk, W. Massa, Can. J. Chem. 63, 3328 (1985)

    Article  Google Scholar 

  19. S. Kalem, Appl. Surf. Sci. 236, 336 (2004)

    Article  ADS  Google Scholar 

  20. R.A. Nyquist, R.O. Kagel, Infrared Spectra of Inorganic Compounds (Academic Press, London, 1971)

    Google Scholar 

  21. J.E. Griffiths, D.E. Irish, Inorg. Chem. 3, 1134 (1964)

    Article  Google Scholar 

  22. P.J. Wolf, T.M. Christensen, N.G. Coit, R.W. Swinford, J. Vac. Sci. Technol. A 11(5), 2725 (1993)

    Article  ADS  Google Scholar 

  23. S.S. Chang, R.E. Hummel, J. Lumin. 86, 33 (2000)

    Article  Google Scholar 

  24. G. Kartopu, V.A. Karavanskii, U. Serincan, R. Turan, R.E. Hummel, Y. Ekinci, A. Gunnaes, T.G. Finstad, Phys. Status Solidi (a) 202, 1472 (2005)

    Article  ADS  Google Scholar 

  25. G.S. Armatas, M.G. Kanatzidis, Nat. Lett. 44, 1122 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kalem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalem, S., Arthursson, Ö. & Romandic, I. Transformation of germanium to fluogermanates. Appl. Phys. A 98, 423–428 (2010). https://doi.org/10.1007/s00339-009-5411-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5411-z

PACS

Navigation