Skip to main content
Log in

Simulation of laser-generated ultrasonic wave propagation in solid media and air with application to NDE

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ultrasonic methods are well known as powerful and reliable tool for defect detection. In the previous decades focus and interest have been directed to non-contact sensors and methods, showing many advantages over contact techniques where inspection depends on contact conditions (pressure, coupling medium, contact area). The non-contact hybrid ultrasonic method described here is of interest for many applications, requiring periodic inspection in service or after manufacturing. Despite the potential impact of laser-generated ultrasound in many areas of industry, robust tools for studying the phenomenon are lacking and thus limit the design and optimization of non-destructive testing and evaluation techniques. Here a specific numerical method is presented to efficiently and accurately solve ultrasound wave propagation problems with frequencies in the MHz range traveling in relatively large bodies and through air. This work improves a previous numerical model where propagation of the acoustic waves through air had not been considered, allowing us to simulate the presence of a non-contact transducer in reception in order to simulate numerically the complete experimental setup. It is very important to limit the amount of air to be considered in the FE analyses; otherwise the computational cost would often exceed the resources available. A way to solve the problem is to implement non-reflecting boundary conditions. A non-reflecting boundary condition allows all outgoing waves to exit the domain at the boundary where they have been imposed without reflection; thus, it is possible to model only the portion of air between the non-contact transducer and the solid under testing. Several numerical and experimental analyses were conducted on a 136 lb AREMA rail; here we study in detail two fully non-contact testing configurations for the rail head and web. The information that can be acquired is very valuable for choosing the right setup and configuration when performing non-contact hybrid ultrasonic inspection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kenderian, B.B. Djordjevic, D. Cerniglia, G. Garcia, Insight 48, 336–341 (2006)

    Article  Google Scholar 

  2. S. Kenderian, D. Cerniglia, B.B. Djordjevic, R.E. Green Jr., Res. Nondestruct. Eval. 16, 195–207 (2005)

    Article  ADS  Google Scholar 

  3. C.B. Scruby, L.E. Drain, Laser Ultrasonics: Techniques and Applications (Hilger, Bristol, 1990)

    Google Scholar 

  4. K.L. Telschow, R.J. Conant, J. Acoust. Soc. Am. 88, 1494–1502 (1990)

    Article  ADS  Google Scholar 

  5. S. Kenderian, B.B. Djordjevic, R. Green Jr., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1057–1064 (2003)

    Article  Google Scholar 

  6. C. Cosenza, S. Kenderian, B.B. Djordjevic, R. Green Jr., A. Pasta, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 147–156 (2007)

    Article  Google Scholar 

  7. R. White, J. Appl. Phys. 34, 3559–3567 (1963)

    Article  ADS  Google Scholar 

  8. C.B. Scruby, R.J. Dewhurst, D.A. Hutchins, S.B. Palmer, J. Appl. Phys. 51, 6210–6216 (1980)

    Article  ADS  Google Scholar 

  9. L.R.F. Rose, J. Acoust. Soc. Am. 75, 723–732 (1984)

    Article  MATH  ADS  Google Scholar 

  10. F.A. McDonald, Appl. Phys. Lett. 56, 230–232 (1990)

    Article  ADS  Google Scholar 

  11. L. Gavric, J. Sound Vib. 185, 531–543 (1995)

    Article  MATH  ADS  Google Scholar 

  12. F. Moser, L.J. Jacobs, J. Qu, NDT&E International 32, 225–234 (1999)

    Article  Google Scholar 

  13. R. Sanderson, S. Smith, Insight 44, 359–363 (2002)

    Google Scholar 

  14. W. Hassan, W. Veronesi, Ultrasonics 41, 41–52 (2003)

    Article  Google Scholar 

  15. A. Zerwer, M.A. Polak, J.C. Santamarina, Res. Nondestruct. Eval. 22, 39–52 (2003)

    Article  Google Scholar 

  16. B. Xu, Z. Shen, X. Ni, J. Lu, J. Appl. Phys. 95, 2116–2122 (2004)

    Article  ADS  Google Scholar 

  17. S. Zhou, P. Reynolds, R. Krause, T. Buma, M. Donnell, J.A. Hossack, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 1178–1186 (2004)

    Article  Google Scholar 

  18. H. Jeong, M.C. Park, Res. Nondestruct. Eval. 16, 1–14 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  19. J. Wang, Z. Shen, B. Xu, X. Ni, J. Guan, J. Lu, Appl. Phys. A 84, 301–307 (2006)

    Article  ADS  Google Scholar 

  20. B. Xu, Z. Shen, J. Wang, X. Ni, J. Guan, Lu. J. Appl. Phys. 99, 33508-1–33508-7 (2006)

    Google Scholar 

  21. E. Glushkov, N. Glushkova, A. Ekhlakov, E. Shapar, Wave Motion 43, 458–473 (2006)

    Article  MathSciNet  Google Scholar 

  22. I. Bartoli, A. Marzani, Lanza di Scalea, F, Viola, E. J. Sound Vib. 295, 685–707 (2006)

    Article  ADS  Google Scholar 

  23. N. Terrien, D. Royer, F. Lepoutre, A. Deom, Ultrasonics 46, 251–265 (2007)

    Article  Google Scholar 

  24. R. Cook, D. Malkus, M. Plesha, Concepts and Applications of Finite Element Analysis (Wiley, New York, 1989)

    MATH  Google Scholar 

  25. A. Pantano, D. Cerniglia, Appl. Phys. A: Mater. Sci. Process. 91, 521–528 (2008)

    Article  ADS  Google Scholar 

  26. G. Garcia, B. Larson, S. Kalay, D. Cerniglia, C. Cosenza, Railway Track and Structures, pp. 20–22, Nov. 2008

  27. D. Cerniglia, G. Garcia, G. Girardi, S. Kalay, in Proceedings of the 9th Int. Heavy Haul Conference, Shanghai, Jun. 22–24, 2009

  28. American Railway Engineering and Maintenance-of-Way Association, Manual for Railway Engineering (AREMA, Lanham, 2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pantano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pantano, A., Cerniglia, D. Simulation of laser-generated ultrasonic wave propagation in solid media and air with application to NDE. Appl. Phys. A 98, 327–336 (2010). https://doi.org/10.1007/s00339-009-5402-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5402-0

PACS

Navigation