Skip to main content
Log in

Comparison of Laser Chemical Processing and LaserMicroJet for structuring and cutting silicon substrates

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper deals with the development of a new cutting method for thin silicon solar wafers with liquid-jet-guided lasers (LaserMicroJet®, LMJ, and Laser Chemical Processing, LCP). Several laser systems with different wavelengths were tested to find the optimum laser system and processing parameters in terms of efficient material removal and deep laser cutting. Water and potassium hydroxide were used as carrier liquids to enhance laser ablation. The ablation efficiency was defined as a target parameter and experimentally determined by performing single laser grooves. It is demonstrated that the ablation process of LMJ is mainly affected by silicon melting and then removing by the liquid-jet momentum for single laser grooves. Best result for deep laser grooves is achieved if evaporation dominates the ablation process. Better surface quality referred to laser-induced crystalline damage is presented for a cut wafer with LMJ in comparison to a standard multiwire slurry saw. This shows a great potential of wafering with liquid-jet-guided lasers although no optimal liquid media was used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Richerzhagen, Entwickung und Konstruktion eines Systems zur Uebertragung von Laserenergie für die Laserzahnbehandlung (École Polytechnique Fédérale de Lausanne, Lausanne, 1994)

    Google Scholar 

  2. G.P. Willeke, D. Kray, in Proceedings of the 17th European Photovoltaic Solar Energy Conference, Munich, Germany, 2001

  3. D. Kray, M. Schumann, A. Eyer, G.P. Willeke, R. Kübler, J. Beinert, G. Kleer, in Proceedings of the 4th World Conference on Photovoltaic Energy Conversion, Waikoloa, Hawaii, USA, 2006

  4. P.M. Nasch, S. Schneeberger, in Proceedings of the 20th European Photovoltaic Solar Energy Conference, Barcelona, Spain, 2005

  5. A. Mueller, N. Cherradi, P.M. Nasch, in 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 2003

  6. A. Kruusing, S. Leppävuori, A. Uusimäki, B. Petrêtis, O. Makarova, Sens. Actuators 74, 45–51 (1999)

    Article  Google Scholar 

  7. S. Zhu, Y.F. Lu, M.H. Hong, X.Y. Chen, J. Appl. Phys. 89, 2400–2403 (2001)

    Article  Google Scholar 

  8. M. Geiger, W. Becker, T. Rebhan, J. Hutfless, N. Lutz, Appl. Surf. Sci. 96–98, 309–315 (1996)

    Article  Google Scholar 

  9. A. Dupont, P. Caminat, P. Bournot, J.P. Gauchon, J. Appl. Phys. 78, 2022–2028 (1995)

    Article  ADS  Google Scholar 

  10. S. Baumann, D. Kray, K. Mayer, A. Eyer, G.P. Willeke, in Proceedings of the 4th World Conference on Photovoltaic Energy Conversion, Waikoloa, Hawaii, USA, 2006

  11. S. Hopman, A. Fell, K. Mayer, M. Aleman, M. Mesec, R. Müller, D. Kray, G.P. Willeke, in 22nd European Photovoltaic Solar Energy Conference and Exhibition, Milan, Italy, 2007

  12. D. Kray, A. Fell, S. Hopman, K. Mayer, M. Mesec, S.W. Glunz, G.P. Willeke, in 22nd European Photovoltaic Solar Energy Conference and Exhibition, Milan, Italy, 2007

  13. K.F. Palmer, D. Williams, J. Opt. Soc. Am. 64, 1107–1110 (1974)

    Article  ADS  Google Scholar 

  14. E. Ghassemieh, H.K. Versteeg, M. Acar, J. Mech. Eng. Sci. 220, 1739–1753 (2006)

    Google Scholar 

  15. D. Bäuerle, Laser Processing and Chemistry, 3rd edn. (Springer, Berlin, 2000)

    Google Scholar 

  16. C.P. Grigoropoulos, R.H. Buckholz, G.A. Domoto, J. Appl. Phys. 60, 2304–2309 (1986)

    Article  ADS  Google Scholar 

  17. A. Fell, S. Hopman, D. Kray, G.P. Willeke, 22nd European Photovoltaic Solar Energy Conference and Exhibition, Milan, Italy, 2007

  18. A. Fell, D. Kray, G.P. Willeke, Appl. Phys. A 92, 987–991 (2008)

    Article  ADS  Google Scholar 

  19. R.C. Weast, M.J. Astle, CRC Handbook of Chemistry and Physics, 62nd edn. (CRC Press, Boca Raton, 1981–1982)

    Google Scholar 

  20. H. Seidel, Der Mechanismus des Siliziumätzens in alkalischen Lösungen (Freie Universität Berlin, Berlin, 1986)

    Google Scholar 

  21. D.J. Ehrlich, J.Y. Tsao, Laser Microfabrication: Thin Film Processes and Lithography (Academic Press, San Diego, 1989)

    Google Scholar 

  22. D. Schneider, E. Stiehl, R. Hammer, A. Franke, R. Riegert, T. Schuelke, Proc. SPIE 4692, 195–211 (2002)

    Article  ADS  Google Scholar 

  23. R.K. Iler, The Chemistry of Silica (Wiley, New York, 1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sybille Hopman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hopman, S., Fell, A., Mayer, K. et al. Comparison of Laser Chemical Processing and LaserMicroJet for structuring and cutting silicon substrates. Appl. Phys. A 95, 857–866 (2009). https://doi.org/10.1007/s00339-009-5087-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5087-4

PACS

Navigation