Skip to main content
Log in

Influence of bases on hydrothermal synthesis of titanate nanostructures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A hydrothermal treatment of titanium dioxide (TiO2) with various bases (i.e., LiOH, NaOH, KOH, and NH4OH) was used to prepare materials with unique morphologies, relatively small crystallite sizes, and large specific surface areas. The experimental results show that the formation of TiO2 is largely dependent on the type, strength and concentration of a base. The effect of the nature of the base used and the concentration of the base on the formation of nanostructures were investigated using X-ray diffraction, Raman spectroscopy, transmission and scanning electron microscopy, as well as surface area measurements. Sodium hydroxide (NaOH) and potassium hydroxide (KOH) were both used to transform the morphology of starting TiO2 material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.G. Yu, H.G. Yu, B. Cheng, X.J. Zhao, J.C. Yu, W.K. Ho, J. Phys. Chem. B 107, 13871 (2003)

    Article  Google Scholar 

  2. F.B. Li, X.Z. Li, M.F. Hou, Appl. Catal. B: Environ. 48, 185 (2004)

    Article  Google Scholar 

  3. J.G. Yu, X.J. Zhao, Q.N. Zhao, J. Mater. Res. 7, 379 (2000)

    Google Scholar 

  4. J.C. Zhao, T.X. Wu, K.Q. Wu, K. Oikawa, H. Hidaka, N. Serpone, Environ. Sci. Technol. 32, 2394 (1998)

    Article  Google Scholar 

  5. M. Adachi, Y. Murata, M. Harada, S. Yoshikawa, Chem. Lett. 8, 942 (2000)

    Article  Google Scholar 

  6. H. Peng, G. Li, Z. Zhang, Mater. Lett. 59, 1142 (2005)

    Article  Google Scholar 

  7. P. Hoyer, Langmuir 12, 1411 (1996)

    Article  Google Scholar 

  8. B.B. Lakshmi, P.K. Dorhout, C.R. Martin, Chem. Mater. 9, 857 (1997)

    Article  Google Scholar 

  9. S.M. Liu, L.M. Gan, L.H. Liu, W.D. Zhang, H.C. Zeng, Chem. Mater. 14, 1391 (2002)

    Article  Google Scholar 

  10. S. Lee, C. Jeon, Y. Park, Chem. Mater. 16, 4292 (2004)

    Article  Google Scholar 

  11. M.S. Sander, M.J. Cote, W. Gu, B.M. Kile, C.P. Tripp, Adv. Mater. 16, 2052 (2004)

    Article  Google Scholar 

  12. Q. Zhang, L. Gao, J. Sun, S. Zheng, Chem. Lett. 31, 226 (2002)

    Article  Google Scholar 

  13. G.H. Du, Q. Chen, R.C. Che, Z.Y. Yuan, L.P. Peng, Appl. Phys. Lett. 79, 3702 (2001)

    Article  ADS  Google Scholar 

  14. X. Meng, D. Wang, J. Liu, S. Zhang, Mater. Res. Bull. 39, 2163 (2004)

    Article  Google Scholar 

  15. R. Ma, Y. Bando, T.J. Sasaki, T.J. Phys. Chem. B 108, 2115 (2004)

    Article  Google Scholar 

  16. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Langmuir 14, 3160 (1998)

    Article  Google Scholar 

  17. Q. Chen, W.Z. Zhou, G.H. Du, L.M. Peng, Adv. Mater. 14, 1208 (2002)

    Article  Google Scholar 

  18. Y. Lei, L.D. Zhang, G.W. Meng, G.H. Li, X.Y. Zhang, C.H. Liang, W. Chen, S.X. Wang, Appl. Phys. Lett. 78, 1125 (2001)

    Article  ADS  Google Scholar 

  19. L. M Sikhwivhilu, N.J. Coville, D. Naresh, K.V.R. Chary, V. Vishwanathan, Appl. Catal. A: Gen. 52, 324 (2007)

    Google Scholar 

  20. Z.Y. Yuan, B.L. Su, Colloids Surf. A: Physicochem. Eng. Aspects 241, 173 (2004)

    Article  Google Scholar 

  21. X. Sun, X. Chen, Y. Li, Inorg. Chem. 41, 4996 (2002)

    Article  Google Scholar 

  22. B.D. Yao, Y.F. Chan, X.Y. Zhang, W.F. Zhang, Z.Y. Zhang, Z.Y. Yang, N. Wang, Appl. Phys. Lett. 82, 281 (2003)

    Article  ADS  Google Scholar 

  23. Y.Q. Wang, G.Q. Hu, X.F. Duan, H.L. Sun, Q.K. Xue, Chem. Phys. Lett. 365, 427 (2002)

    Article  ADS  Google Scholar 

  24. X.Y. Liu, N.J. Coville, S. Afr. J. Chem. 58, 110 (2005)

    Google Scholar 

  25. S. Uchida, R. Chiba, M. Tomiha, N. Masaki, M. Shirai, Stud. Surf. Sci. Catal. 146, 791 (2003)

    Article  Google Scholar 

  26. T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, K. Niihara, Adv. Mater. 11, 1307 (1999)

    Article  Google Scholar 

  27. J. Yang, Z. Jin, X. Wang, W. Li, J. Zhang, S. Zhang, X. Guo, Z. Zhang, Dalton Trans. 3898 (2003). doi: 10.1039/b305585

  28. N. Masaki, S. Uchida, H. Yamana, T. Sato, Chem. Mater. 14, 419 (2002)

    Article  Google Scholar 

  29. X. Sun, Y. Li, Chem. Eur. J. 9, 2229 (2003)

    Article  Google Scholar 

  30. R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E.A. Kojima, A. Kitamura, M. Shimohi-goshi, T. Watanabe, Adv. Mater. 10, 135 (1998)

    Article  Google Scholar 

  31. D. Dvoranova, V. Brezova, M. Mazura, M.A. Malati, Appl. Catal. B: Environ. 37, 91 (2002)

    Article  Google Scholar 

  32. G.S. Gopalakrisna, S.P. Madhu, M. Mahendra, M.J. Maheshu, M.A. Sridhara, P. Shashidhara, J. Mater. Lett. 60, 613 (2006)

    Article  Google Scholar 

  33. S.H. Chein, Y.C. Liou, M.C. Kuo, Synth. Met. 152, 333 (2005)

    Article  Google Scholar 

  34. J. Zhang, H. Zou, Q. Qing, Y. Yang, Q. Li, Z. Liu, X. Guo, Z. Du, J. Phys. Chem. B: 107, 3712 (2003)

    Article  Google Scholar 

  35. T.J. Aitchison, M. Ginic-Markovic, J.G. Matisons, G.P. Simon, P.M. Fredericks, J. Phys. Chem. C: 111, 2440 (2007)

    Article  Google Scholar 

  36. Y. Kim, D. Lee, Y. Oh, J. Choi, S. Baik, Synth. Met. 156, 999 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suprakas Sinha Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sikhwivhilu, L.M., Sinha Ray, S. & Coville, N.J. Influence of bases on hydrothermal synthesis of titanate nanostructures. Appl. Phys. A 94, 963–973 (2009). https://doi.org/10.1007/s00339-008-4877-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-008-4877-4

PACS

Navigation