Skip to main content
Log in

Growth, electronic and magnetic properties of doped ZnO epitaxial and nanocrystalline films

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have used oxygen plasma assisted metal organic chemical vapor deposition along with wet chemical synthesis and spin coating to prepare CoxZn1-xO and MnxZn1-xO epitaxial and nanoparticle films. Co(II) and Mn(II) substitute for Zn(II) in the wurtzite lattice in materials synthesized by both methods. Room-temperature ferromagnetism in epitaxial Co:ZnO films can be reversibly activated by diffusing in Zn, which occupies interstitial sites and makes the material n-type. O-capped Co:ZnO nanoparticles, which are paramagnetic as grown, become ferromagnetic upon being spin coated in air at elevated temperature. Likewise, spin-coated N-capped Mn:ZnO nanoparticle films also exhibit room-temperature ferromagnetism. However, the inverse systems, N-capped Co:ZnO and O-capped Mn:ZnO, are entirely paramagnetic when spin coated into films in the same way. Analysis of optical absorption spectra reveals that the resonances Co(I)↔Co(II)+e- CB and Mn(III)↔Mn(II)+h+ VB are energetically favorable, consistent with strong hybridization of Co (Mn) with the conduction (valence) band of ZnO. In contrast, the resonances Mn(I)↔Mn(II)+e- CB and Co(III)↔Co(II)+h+ VB are not energetically favorable. These results strongly suggest that the observed ferromagnetism in Co:ZnO (Mn:ZnO) is mediated by electrons (holes).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Fukumura, Z. Jin, M. Kawasaki, T. Shono, T. Hasegawa, S. Koshihara, H. Koinuma, Appl. Phys. Lett. 78, 958 (2001)

    Article  ADS  Google Scholar 

  2. S.W. Jung, S.-J. An, J.-C. Yi, C.U. Yung, S.I. Lee, S. Cho, Appl. Phys. Lett. 80, 4561 (2002)

    Article  ADS  Google Scholar 

  3. A. Tiwari, C. Jin, A. Kvit, D. Kumar, J.F. Muth, J. Narayan, Solid State Commun. 121, 371 (2002)

    Article  Google Scholar 

  4. P. Sharma, A. Gupta, K.V. Rao, F.J. Owens, R. Sharma, R. Ahuja, J.M.O. Guillen, B. Johansson, G.A. Gehring, Nature Mater. 2, 673 (2003)

    Article  ADS  Google Scholar 

  5. D.C. Kundaliya, S. Ogale, S.E. Lofland, S. Dhar, C.J. Metting, D.R. Shine, Z. Ma, B. Varughese, K.V. Ramanujachary, L. Salamanca-Riba, T. Venkatesan, Nature Mater. 3, 709 (2004)

    Article  ADS  Google Scholar 

  6. M. Ivill, S.J. Pearton, D.P. Norton, J. Kelly, A.F. Hebard, J. Appl. Phys. 97, 053904 (2005)

    Article  Google Scholar 

  7. K. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett. 79, 988 (2001)

    Article  ADS  Google Scholar 

  8. M. Venkatesan, C.B. Fitzgerald, J.G. Lunney, J.M.D. Coey, Phys. Rev. Lett. 93, 177206 (2004)

    Article  ADS  Google Scholar 

  9. K. Sato, H. Katayama-Yoshida, Semicond. Sci. Technol. 17, 367 (2002)

    Article  ADS  Google Scholar 

  10. N.Y. Garces, N.C. Giles, L.E. Halliburton, G. Cantwell, D.B. Eason, D.C. Reynolds, D.C. Look, Appl. Phys. Lett. 80, 1334 (2002)

    Article  ADS  Google Scholar 

  11. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki, Nature Mater. 4, 42 (2004)

    Article  ADS  Google Scholar 

  12. A.C. Tuan, J.D. Bryan, A.B. Pakhamov, V. Shutthanandan, S. Thevuthasan, D.E. McCready, D. Gaspar, M.H. Engelhard, J.W. Rogers Jr., K.M. Krishnan, D.R. Gamelin, S.A. Chambers, Phys. Rev. B 70, 054206 (2004)

    Article  Google Scholar 

  13. D.A. Schwartz, D.R. Gamelin, Adv. Mater. 16, 2115 (2004)

    Article  Google Scholar 

  14. N.S. Norberg, K.R. Kittilstved, J.E. Amonette, R.V. Kukkadapu, D.A. Schwartz, D.R. Gamelin, J. Am. Chem. Soc. 126, 9387 (2004)

    Article  Google Scholar 

  15. W.K. Liu, M. Salley, D.R. Gamelin, J. Phys. Chem. B 109, 14486 (2005)

    Article  Google Scholar 

  16. R.M. de la Cruz, R. Pareja, R. Gonzalez, L.A. Boatner, Y. Chen, Phys. Rev. B 45, 6581 (1992)

    Article  ADS  Google Scholar 

  17. K.R. Kittilstved, J. Zhou, W.K. Liu, J.D. Bryan, D.R. Gamelin, cond-mat/0507121 (2005)

  18. M. Kobayashi, Y. Ishida, J.I. Hwang, T. Mizokawa, A. Fujimori, K. Mamiya, J. Okamoto, Y. Takeda, T. Okane, Y. Saitoh, Y. Muramatsu, A. Tanaka, H. Saeki, H. Tabata, T. Kawai, cond-mat/0505387 (2005)

  19. Y. Natsume, H. Sakata, T. Hirayama, J. Appl. Phys. 72, 4203 (1992)

    Article  ADS  Google Scholar 

  20. K.R. Kittilstved, N.S. Norberg, D.R. Gamelin, Phys. Rev. Lett. 94, 147 (2005)

    Article  Google Scholar 

  21. K.R. Kittilstved, W.K. Liu, D.R. Gamelin, Nature Mater. 5, 291 (2006)

    Article  ADS  Google Scholar 

  22. C.K. Jørgensen, Prog. Inorg. Chem. 12, 101 (1970)

    Article  Google Scholar 

  23. A.B.P. Lever, Inorganic Electronic Spectroscopy (Elsevier, Amsterdam, 1984)

    Google Scholar 

  24. D.C. Look, B. Claflin, Phys. Stat. Solidi B 241, 624 (2004)

    Article  ADS  Google Scholar 

  25. D.C. Look, J.W. Hemsky, J.R. Sizelove, Phys. Rev. Lett. 82, 2552 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.A. Chambers.

Additional information

PACS

75.50.Pp

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chambers, S., Schwartz, D., Liu, W. et al. Growth, electronic and magnetic properties of doped ZnO epitaxial and nanocrystalline films. Appl. Phys. A 88, 1–5 (2007). https://doi.org/10.1007/s00339-007-3948-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-007-3948-2

Keywords

Navigation