Skip to main content
Log in

Designing strategy to enhance mode selectivity of higher-output oxide-confined vertical-cavity surface-emitting lasers

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Performance of modern oxide-confined (OC) vertical-cavity surface-emitting diode lasers (VCSEL s) is more sensitive to the construction details than in the case of other VCSEL s. In particular, a stable single-fundamental-mode operation is difficult to be achieved in these VCSEL s especially in higher-output large-size continuous-wave (cw) operating devices at higher temperatures. In the present paper, an operation of OC VCSEL s has been investigated with the aid of the comprehensive fully self-consistent model using the (GaIn)(NAs)/GaAs quantum-well VCSEL with two oxide apertures as a typical example. A new approach is proposed to enhance cw RT single-fundamental-mode low-threshold operation in higher-output OC VCSEL s. One of their oxide apertures should be shifted to the node position of the resonator standing wave where it is working as the electrical aperture only. Then diameters of both apertures may be changed independently giving an additional degree of freedom for VCSEL designing, which enables their optimisation. While the larger-diameter optical aperture placed in the anti-node position creates an efficient radial waveguiding effect, the smaller-diameter electrical aperture enhances a more uniform current injection into the VCSEL active region. Due to combining influence of both the apertures, the single-fundamental-mode operation is predicted in a large device with the 10-μm-diameter active region even for 80 K active-region temperature increase over RT of the ambient. An impact of intentional detuning at room-temperature (RT) of VCSEL active-region gain spectrum towards shorter wavelengths with respect to the resonator mode improves mode selectivity is also analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.S. Harris, Jr.: Semicond. Sci. Technol. 17, 880 (2002)

    Article  ADS  Google Scholar 

  2. M. Pessa, C.S. Peng, T. Jouhti, E.-M. Pavelescu, W. Li, S. Karirinne, H. Liu , O. Okhotnikov: Microelectron. Eng. 69, 195 (2003)

    Article  Google Scholar 

  3. A.W. Jackson, R.L. Naone, M.J. Dalberth, J.M. Smith, K.J. Malone, D.W. Kisker, J.F. Klem, K.D. Choquette, D.K. Serkland, K.M. Geib: Electon. Lett. 37, 355 (2001)

    Article  Google Scholar 

  4. H. Riechert, A. Ramakrishnan, G. Steinle: Semicond. Sci. Technol. 17, 892 (2002)

    Article  ADS  Google Scholar 

  5. H.-C. Yu, S.-J. Chang, Y.-K. Su, C.-P. Sung, Y.-W. Lin, H.-P. Yang, C.-Y. Huang, J.-M. Wang: Mater. Sci. Eng., B 106, 101 (2004)

    Article  Google Scholar 

  6. M. Osiński, W. Nakwaski: Chapter 5 in Vertical-Cavity Surface-Emitting Laser Devices, H. Li, K. Iga (Eds.), (Springer, Berlin 2003)

  7. W. Shan, W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E. Haller, J.F. Geisz , D.J. Friedman, J.M. Olson, S.R. Kurtz, H.P. Xin, C.W. Tu: Phys. Status Solidi B 223, 75 (2001)

    Article  ADS  Google Scholar 

  8. M. Hetterich, A. Grau, A.Y. Egorov, H. Riechert H: J. Appl. Phys. 94, 1810 (2003)

    Article  ADS  Google Scholar 

  9. C. Skierbiszewski: Semicond. Sci. Technol. 17, 803 (2002)

    Article  ADS  Google Scholar 

  10. J.S. Blakemore: J. Appl. Phys. 53, R123 (1983)

  11. C.D. Thurmond: J. Electrochem. Soc. 122, 1133 (1975)

    Article  Google Scholar 

  12. S. Shirakata, M. Kondow, T. Kitatani: Appl. Phys. Lett. 79, 54 (2001)

    Article  ADS  Google Scholar 

  13. M. Hetterich, M.D. Dawson, A.Y. Egorov, D. Bernklau, H. Riechert: Appl. Phys. Lett. 76, 1030 (2000)

    Article  ADS  Google Scholar 

  14. N. Tansu, L.J. Mawst: Appl. Phys. Lett. 82, 1500 (2003)

    Article  ADS  Google Scholar 

  15. S. Tomic, E.P. O’Reilly: Physica E 13, 1102 (2002)

    Article  ADS  Google Scholar 

  16. H. Carrére, A. Arnoult, X. Marie, T. Amand, E. Bedel-Pereira, R.J. Potter, N. Balkan: Physica E 17, 245 (2003)

    Article  ADS  Google Scholar 

  17. W.-H. Seo, J.F. Donegan: Appl. Phys. Lett. 82, 505 (2003)

    Article  ADS  Google Scholar 

  18. D. Lancefield, A.R. Adams, A.T. Meney, W. Knap, E. Litwin-Staszewska, C. Skierbiszewski, J.L. Robert: J. Phys. Chem. Solids 56, 469 (1995)

    Article  ADS  Google Scholar 

  19. W. Nakwaski, M. Osiński: IEEE J. Quantum Electron. QE-29, 1981 (1993)

  20. R.P. Sarzała, W. Nakwaski: IEE Proc.-Optoelectron. 144, 421 (1997)

    Article  Google Scholar 

  21. R. Fehse, S. Tomiae, A.R. Adams, S.J. Sweeney, E.P. O’Reilly, A. Andreev, H. Riechert: IEEE J. Sel. Topics Quantum Electron. 8, 801 (2002)

    Article  Google Scholar 

  22. H. Wenzel and H.-J. Wünsche: IEEE J. Quantum Electron. QE-33, 1156 (1997)

    Google Scholar 

  23. D.I. Babiae, J. Piprek, J.E. Bowers: Chapter 9, In: Vertical Cavity Surface Emitting Lasers (C. Wilmsen, H. Temkin, L.A. Coldren, Eds.) (University Press, Cambridge 1999)

  24. W. Nakwaski: J. Appl. Phys. 64, 159 (1988)

    Article  ADS  Google Scholar 

  25. S.L. Chuang: Physics of Optoelectronics Devices (Wiley & Sons, New York 1995)

  26. P.G. Eliseev: Electron. Lett. 33, 2046 (1997)

    Article  Google Scholar 

  27. G. Steinle, H. Riechert, A.Y. Egorov: Electron. Lett. 37, 93 (2001)

    Article  Google Scholar 

  28. G. Steinle, F. Mederer, M. Kircherer, R. Michalzik, G. Kristen, A.Y. Egorov, H. Riechert, H.D. Wolf, K.J. Ebeling: Electron. Lett. 37, 632 (2001)

    Article  Google Scholar 

  29. A. Ramakrishnan, G. Steinle, D. Supper, W. Stolz, G. Ebbinghaus: J. Cryst . Growth 248, 457 (2003)

    Article  ADS  Google Scholar 

  30. K.D. Choquette, K.L. Lear, R.P. Schneider, Jr., K.M. Geib, J. Figiel, R. Hull : IEEE Photon. Tech. Lett. 7, 1237 (1995)

    Article  ADS  Google Scholar 

  31. C. Jung, R. Jäger, M. Grabherr, R. Schnitzer, R. Michalzik, B. Weigl, S. Müller , K.J. Ebeling: Electron. Lett. 33, 1790 (1997)

    Article  Google Scholar 

  32. R. Grabherr, R. Jäger, R. Michalzik, B. Weigl, G. Reiner, K.J. Ebeling: IEEE Photon. Tech. Lett. 9, 1304 (1997)

    Article  ADS  Google Scholar 

  33. B. Weigl, M. Grabherr, C. Jung, R. Jäger, G. Reiner, R. Michalzik, D. Sowada , K.J. Ebeling: IEEE J. Sel. Topics Quantum Electron. 3, 409 (1997)

    Article  Google Scholar 

  34. Y.-Z. Huang: J. Appl. Phys. 83, 3769 (1998)

    Article  ADS  Google Scholar 

  35. W. Nakwaski, M. Wasiak, P. Maaekowiak, W. Bedyk, M. Osiński, A. Passaseo, V. Tasco, M.T. Todaro, M. De Vittorio, R. Joray, J.X. Chen, R.P. Stanley, A. Fiore: Semicond. Sci. Technol. 19, 333 (2004)

    Article  ADS  Google Scholar 

  36. M. Reinhardt, M. Fisher, M. Kamp, J. Hofmann, A. Forchel: IEEE Photon. Tech. Lett. 12, 239 (2000)

    Article  ADS  Google Scholar 

  37. D. Gollub, M. Fischer, M. Kamp, A. Forchel: Appl. Phys. Lett. 81, 4330 (2002)

    Article  ADS  Google Scholar 

  38. T. Kitatani, M. Kondow, S. Nakatsuka, Y. Yazawa, M. Okai: IEEE J. Sel. Topics Quantum Electron. 3, 206 (1997)

    Article  Google Scholar 

  39. S. Sato, S. Satoh: Electron. Lett. 35, 1251 (1999)

    Article  Google Scholar 

  40. K. Yang, C.P. Hains, J. Cheng: IEEE Photon. Tech. Lett. 12, 7 (2000)

    Article  ADS  Google Scholar 

  41. R.P. Sarzała: IEEE J. Quantum Electron. QE-40, 629 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.P. SarzaŁa.

Additional information

PACS

42.55.Px; 02.60.Cb; 85.60.Bt

Rights and permissions

Reprints and permissions

About this article

Cite this article

SarzaŁa, R. Designing strategy to enhance mode selectivity of higher-output oxide-confined vertical-cavity surface-emitting lasers. Appl. Phys. A 81, 275–283 (2005). https://doi.org/10.1007/s00339-005-3251-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3251-z

Keywords

Navigation