Skip to main content

Advertisement

Log in

Size dependence of mechanical properties of gold at the sub-micron scale

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

An Erratum to this article was published on 17 October 2007

Abstract

The results of both experimental studies and molecular dynamics simulations indicate that crystals exhibit strong size effects at the sub-micron scale. In experimental studies, the size effects are usually explained by strain gradients. By contrast, atomistic simulations suggest that the yield strength depends on the size even without strain gradients and scales with the sample size through a power relationship. Here we address these two different approaches to the size dependence of mechanical properties. Results of uniaxial compression experiments on gold single crystals at the sub-micron scale, without significant stress/strain gradients, are presented. The free-standing single-crystal Au cylinders are created by focused ion beam machining and are subsequently compressed using a nanoindenter fitted with a diamond flat punch. Compressive stresses and strains, as well as pillar stiffnesses, are determined from the test data. The experiments show that the flow stresses of these pillars increase significantly with decreasing pillar diameter, reaching several GPa for the smallest pillars. These high strengths appear to be controlled by dislocation starvation, which is unique to small crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N.A. Fleck, G.M. Muller, M.F. Ashby, J.W. Hutchinson: Acta Metall. Mater. 42, 475 (1994)

    Article  CAS  Google Scholar 

  2. J.S. Stolken, A.G. Evans: Acta Mater. 46, 5109 (1998)

    Article  CAS  Google Scholar 

  3. N.A. Stelmashenko, M.G. Walls, L.M. Brown, Y.V. Millman: Acta Metall. Mater. 41, 2855 (1993)

    Article  CAS  Google Scholar 

  4. M.S. De Guzman, G. Neubauer, P. Flinn, W.D. Nix: Mater. Res. Symp. Proc. 308, 613 (1993)

    Google Scholar 

  5. M. Atkinson: J. Mater. Res. 10, 2908 (1995)

    CAS  Google Scholar 

  6. Q. Ma, D.R. Clarke: J. Mater. Res. 10, 853 (1995)

    CAS  Google Scholar 

  7. W.J. Poole, M.F. Ashby, N.A. Fleck: Scr. Metall. Mater. 34, 559 (1996)

    CAS  Google Scholar 

  8. K.W. McElhaney, J.J. Vlassak, W.D. Nix: J. Mater. Res. 13, 1300 (1998)

    CAS  Google Scholar 

  9. S. Suresh, T.G. Nieh, B.W. Choi: Scr. Mater. 41, 951 (1999)

    Article  CAS  Google Scholar 

  10. W.W. Gerberich, N.I. Tymiak, J.C. Grunlan, M.F. Horstemeyer, M.I. Baskes: J. Appl. Mech. (Trans. ASME) 69, 433 (2002)

    Article  CAS  Google Scholar 

  11. W.D. Nix, H. Gao: J. Mech. Phys. Solids 46, 411 (1998)

    Article  CAS  Google Scholar 

  12. M.F. Ashby: Philos. Mag. 21, 399 (1970)

    CAS  Google Scholar 

  13. H. Gao, Y. Huang, W.D. Nix: Naturwissenschaftlen 86, 507 (1999)

    Article  CAS  Google Scholar 

  14. H. Gao, Y. Huang, W.D. Nix, J.W. Hutchinson: J. Mech. Phys. Solids 47, 1239 (1999)

    Article  Google Scholar 

  15. Y. Huang, H. Gao, W.D. Nix, J.W. Hutchinson: J. Mech. Phys. Solids 48, 99 (2000)

    Article  Google Scholar 

  16. Y. Huang, Z. Xue, H. Gao, W.D. Nix, Z.C. Xia: J. Mater. Res. 15, 1786 (2000)

    CAS  Google Scholar 

  17. Y. Huang, J.Y. Chen, T.F. Guo, L. Zhang, K.C. Hwang: Int. J. Fract. 100, 1 (1999)

    Article  CAS  Google Scholar 

  18. J.B. Pethica, W.C. Oliver: Proc. Mater. Res. Soc. 13 (1988)

  19. T.F. Page, W.C. Oliver, C.J. McHargue: J. Mater. Res. 7, 450 (1992)

    CAS  Google Scholar 

  20. W.W. Gerberich, J.C. Nelson, E.T. Lilleodden, P. Anderson, J.T. Wyrobek: Acta Mater. 44, 3585 (1996)

    Article  CAS  Google Scholar 

  21. A.B. Mann, J.B. Pethica: Proc. Mater. Res. Soc. 153 (1996)

  22. S.G. Corcoran, R.J. Colton, E.T. Lilleodden, W.W. Gerberich: Phys. Rev. B 55, 16 057 (1997)

    Article  Google Scholar 

  23. J.D. Kiely, K.F. Jarauch, J.E. Houston, P.E. Russell: J. Mater. Res. 15, 1693 (2000)

    Google Scholar 

  24. S. Suresh, T.G. Nieh, B.W. Choi: Scr. Mater. 41, 951 (1999)

    Article  CAS  Google Scholar 

  25. M.F. Horstemeyer, M.I. Baskes, S.J. Plimpton: Acta Mater. 49, 4363 (2001)

    Article  CAS  Google Scholar 

  26. M.D. Uchic, D.M. Dimiduk, J.N. Florando, W.D. Nix: Science 305, 986 (2004)

    Article  CAS  PubMed  Google Scholar 

  27. J.R. Greer, W.C. Oliver, W.D. Nix: Acta Mater. 53, 1821 (2005)

    Article  CAS  Google Scholar 

  28. E.M. Savitskii, A. Prince: Handbook of Precious Metals (1969) p. 128

  29. B. Arnold, Lohse, H.D. Bauer, T. Gemming, K. Wetzig, K. Binder: Microsc. Microanal. 9, 140 (2003)

    Google Scholar 

  30. F. Machalett, K. Edinger, J. Melngailis, M. Diegel, K. Steenbeck, E. Steinbeiss: Appl. Phys. A 71, 331 (2000)

    Google Scholar 

  31. J.J. Gilman: Appl. Micromechan. Flow Solids 185 (1953)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.R. Greer.

Additional information

PACS

68.60.Bs

An erratum to this article is available at http://dx.doi.org/10.1007/s00339-007-4296-y.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greer, J., Nix, W. Size dependence of mechanical properties of gold at the sub-micron scale. Appl. Phys. A 80, 1625–1629 (2005). https://doi.org/10.1007/s00339-005-3204-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-005-3204-6

Keywords

Navigation